
Spatial Active Learning For Cost-Effective Sensing and Feature Extraction

Matthew Berger* MATTHEW.BERGER.1@US.AF.MIL
Lucas Magee† MAGEE.L@HUSKY.NEU.EDU
Lee M. Seversky*, Eric Heim* {LEE.SEVERSKY, ERIC.HEIM.1}@US.AF.MIL

*Air Force Research Laboratory, Information Directorate, Rome, NY USA
†Northeastern University, Department of Computer Science, Boston, MA USA

1. Introduction
Pool-based active learning methods have historically been
used as a means to reduce the amount of supervised data nec-
essary to learn accurate inference models. However, such
methods assume that the pool of unsupervised instances
from which the active learner chooses is known a priori.
More specifically, the active learner must have access to the
features of these instances that will be used for learning. In
many practical learning scenarios there is a cost in obtain-
ing these features. For instance, feature extraction methods
may be computationally expensive, or simply observing in-
stances can be expensive when state-of-the-art sensors are
required. Hence pool-based active learning methods, while
cost effective in supervision, can be deemed data inefficient
due to the need for a pool of fully descriptive data instances.

Fortunately, data instances often have alternative, low-cost
side information that can be used to reason about their rela-
tionships. In this work, we focus on multi-class classifica-
tion tasks where instances are spatial in nature – each data
instance is associated with a physical location on the Earth.
We assume a scenario where data instances are acquired
via spatial queries – this is common in visual recognition
tasks where data sources such as Flickr, Google Maps, and
Google Streetview serve images via geographic coordinates.
Our main observation is that the uncertainty in the labels
of unsupervised data instances is smooth with respect to
their physical locations. Thus uncertainty in an instance’s
label can be approximated using the spatial relationships it
has with labeled instances. This allows us to informatively
select data instances to collect and compute features, lead-
ing to a low-cost, data-efficient active learning scheme. In
the remainder of this paper, we formalize our method for
spatial active learning, and show its strengths for data-scarce
classification of satellite imagery and aerial LiDAR data.

2. Methodology
We begin by establishing some notation. Let S =
{s1, ...sn} be a pool of two-dimensional coordinates cor-

responding to unlabeled instances. Let X = {x1, ...xn}
be their features used to learn a classifier, and D =
{(x1, y1) , ..., (xn, yn)} be the full set of labeled, fully-
featured data, where y1, ..., yn ∈ Y = {1, ..., C} is the set
of labels. In this work we use multinomial logistic regres-
sion as our model, which defines the conditional probability
of a class c given an instance xi as:

p (Y = c|xi) =
1

1 + e−w
T
c xi

, (1)

where wc are the logistic regression parameters for class
c, and W = {w1, ..., wC} are the parameters for the full
model. With this definition, entropy can be used as a means
to measure the uncertainty in the label of an instance:

H (Y |xi) = −
C∑

c=1

p (Y = c|xi) log (p (Y = c|xi)) (2)

Using these entropy scores, the instance for which the logis-
tic model is most uncertain about can be chosen:

x∗ = argmax
xi∈X

H (Y |xi) (3)

A common technique in active learning, called uncertainty
sampling, iteratively selects instances to be labeled at a
given round t by finding x∗ given the current logistic model
Wt−1, posing it to a source of supervision for its true label,
and retraining the model with this labeled instance.

In our learning setting, the active learner does not have
access to the full pool of fully-featured instances X . Instead
it has access to S , and can select instances for which features
are constructed. We call our algorithm for this setting Spatial
Active Learning (SAL). We assume that there exists a map
f : S 7→ X that maps spatial coordinates to features, and
that f is smooth: points whose physical coordinates are
close implies that their features are a small distance apart
– see Figure 1 (left) for an illustration. This manifests as
smoothness of H , namely H (Y |f(s)) varies smoothly as
a function of s ∈ S, highlighted in Figure 1 (right). This
allows us to estimate entropy at any point s ∈ S from a
sparse set of known entropy values.
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Figure 1: Left: For each instance in the CNY dataset, the
ratio of the average distance of its features to its four nearest
spatial neighbors, and the average distance to randomly
sampled instances, as a histogram over all data (<1 indicates
spatial neighbors are close in full-featured domain). Right:
Example approximate entropy field.

Our active learning scenario at each round t is characterized
by four components: S, Wt−1, Xt−1 ⊂ X , and Dt−1 ⊂ D,
the last two being a pool of instances for which features were
computed and labeled data, respectively. Initially, SAL con-
structs an initial pool X0 by randomly sampling from S and
applying f . All of these instances receive labels to construct
D0. From there, SAL performs subsequent active selection
rounds consisting of two stages. The first stage is exactly
the uncertainty sampling technique described above on the
reduced pool of instances Xt−1. In the second stage, SAL
adds to Xt−1 by first constructing an approximate entropy
field over S. It does this by directly computing the entropy
of the instances in Xt−1 with respect to Wt−1, and interpo-
lating them in the spatial domain. We employ radial basis
function (RBF) interpolation over the 2D domain, where
H (Y |xi) for each feature xi ∈ Xt−1 defines a scalar con-
straint at its corresponding 2D position si ∈ S. We use the
polyharmonic spline radial basis function φ (a) = a2 log (a)
as the RBF (Buhmann, 2003), leading to an approximation
of H defined over S at round t, denoted Ĥt(Y |s) for s ∈ S .

With this approximate measure of uncertainty, SAL actively
selects instances in the spatial domain to form Xt:

Xt =Xt−1∪
{
f

(
argmax

si∈S
Ĥt (Y |si)

)
, f (rand (S))

}
(4)

The first instance is the feature constructed from the spatial
coordinate with highest approximate entropy. The second
is the feature constructed from a randomly selected coordi-
nate. These two elements are a trade-off between exploiting
the instance that is estimated to be most informative, and
randomly exploring the spatial domain. In summary, after
an initialization round, SAL performs rounds of standard
uncertainty sampling according to (3) from Xt−1, followed
by constructing Xt according to (4).

3. Experiments
We apply our method on two data sets of different modali-
ties to highlight the strengths of SAL. The first data set is
aerial 3D LiDAR data scanned over California. The data set
is formed by tiling a given spatial region, where each tile
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Figure 2: Classification error (left: LiDAR, right: imagery)

has a physical location and a feature derived via a bag-of-
words model defined on estimated surface normal variation.
Each tile has a binary label, taking on whether or not the tile
contains man-made structures. The second data set is satel-
lite imagery taken over a region in central New York that
is similarly tiled. We use CNN features from the AlexNet
model trained on ImageNet (Krizhevsky et al., 2012), using
activations from the penultimate layer of the network. Each
tile contains a label consisting of farmlands, water, commer-
cial building, residential building, or industrial building. As
a baseline, we compare to methods that similarly perform
uncertainty sampling for active learning, but add features
to the pool randomly at every round, as studied in (Ertekin
et al., 2007). We vary the amount of samples randomly
added to the pool – note that SAL only adds 2 samples to
the pool at every round. For each data set we evaluate the
methods by comparing the classification error over each
round, taken as the mean error over 20 trials, with each trial
randomly bootstrapped with a different initial pool.

See Figure 2 for the results. We observe that SAL consis-
tently outperforms the baseline when 2 samples are ran-
domly added, and even outperforms the baseline for larger
budgets. Since our method adds samples to the pool that are
likely to have high entropy, our method has a better chance
of selecting high uncertainty samples when compared to ran-
dom sampling. This highlights the fact that entropy can be
reliably estimated in such data-starved environments, where
by using the underlying spatial domain we can informatively
select data points to add to the pool for active learning.
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