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Abstract

We introduce medial diffusion for the matching of undersampled shapes undergoing a nonrigid deformation. We
construct a diffusion process with respect to the medial axis of a shape, and use the quantity of heat diffusion
as a measure which is both tolerant of missing data and approximately invariant to nonrigid deformations. A
notable aspect of our approach is that we do not define the diffusion on the shape’s medial axis, or similar medial
representation. Instead, we construct the diffusion process directly on the shape. This permits the diffusion process
to better capture surface features, such as varying spherical and cylindrical parts, as well as combine with other
surface-based diffusion processes. We show how to use medial diffusion to detect intrinsic symmetries, and for
computing correspondences between pairs of shapes, wherein shapes contain substantial missing data.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Matching of shapes undergoing nonrigid motion is an impor-
tant problem in the area of geometry processing. The prob-
lem amounts to finding correspondences between shapes
which adhere to the underlying deformation. It enables a
wide number of applications such as registration, retrieval,
object tracking, and shape interpolation.

For well-sampled shapes, finding correspondences under
nonrigid motion has been well-studied, with effective solu-
tions proposed by utilizing geodesics [TBW∗11], Möbius
transformations [LF09], and the heat kernel [OMMG10].
For shapes which have been acquired via scanning, however,
the resulting point cloud is often undersampled. Occlusion,
material properties, and constrained resources such as a lim-
ited number of views can often result in the acquisition pro-
cess producing incomplete data. For such point clouds it is
necessary to construct quantities which are invariant to the
motion and insensitive to the lack of data for successfully
matching shapes.

In this paper we propose a method for constructing mea-
sures on undersampled shapes which are invariant to non-
rigid motion. In particular, we use the medial axis as a prior
to both model the deformation and infer the shape. Indeed,

Figure 1: Our approach is able to match shapes undergo-
ing nonrigid motion which contain significant missing data.
Here we show the landmark correspondences automatically
found by our algorithm, and the extrapolated dense map-
ping, color-mapped by the left shape’s medial embedding.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.



M. Berger & C. Silva / Medial Match

previous work has shown how the medial axis is invariant to
pose [ZSM∗05], while also being robust to missing data in
the construction of curve skeletons [TZCO09, LLZM10]. In
fact the work of [ZST∗10] combined these two observations
to match a collection of compact graph skeletons.

Our approach departs from [ZST∗10] and the usage
of such compact representations by instead embracing
the full point cloud, in conjunction with the medial axis
prior, for shape matching. Inspired by heat kernel match-
ing [OMMG10], we introduce medial diffusion for match-
ing shapes, where matching amounts to finding points which
belong to similar medial regions, see Figure 1. We seek cor-
respondences between medial regions for such challenging
point clouds, as there may exist a small amount of surface
correspondences due to missing data, where in Figure 1 this
is due to the shapes being scanned from opposing views.

Our main contribution is the construction of a Laplace op-
erator defined with respect to the medial axis, for which its
resulting heat kernel is suitable for shape matching. Key to
our construction is that we define the operator directly on the
point cloud. To define the Laplace operator we find that it
suffices to measure the likelihood of pairs of points belong-
ing to a mutually common medial ball, rather than utilizing
an explicit geometric medial representation. This direct con-
struction has a number of advantages:

• Our diffusion more faithfully represents the shape com-
pared to curve skeleton methods, as these are inherently
lossy representations, i.e. we can capture medial sheets.
• The diffusion process is sensitive to the geometry of the

surface compared to skeletal representations, i.e. cylindri-
cal regions of different radii exhibit distinct behavior.
• By working directly on the point cloud we can easily com-

bine other diffusion processes.

From medial diffusion, we introduce a practical algo-
rithm for finding landmark points between shapes, and sub-
sequently extrapolating the landmarks to a dense corre-
spondence of medial regions. Our approach also easily ex-
tends to detecting intrinsic symmetries, or nonrigid self-
transformations. We show how our method is tolerant to
missing data, and improves on standard heat kernel matching
of incomplete shapes.

2. Related Work

Our approach is most closely related to three areas: medial
representations, nonrigid registration, and finding correspon-
dences.

Medial Representations: There exists a number of tech-
niques for extracting medial representations from point
clouds. For well-sampled point clouds, a specific subset of
the Voronoi diagram, known as the Voronoi poles, has been
shown to be a provably good approximation to the me-
dial axis [ACK01]. For further processing, such a repre-
sentation might be quite noisy, hence many methods exist

for simplified medial representations, such as the λ-medial
axis [CL05] and the scaled axis transform [MGP10].

For dealing with incomplete point clouds the Voronoi
poles become quite difficult to identify, and indeed may not
exist. In these scenarios it is common to use a curve skeleton
as the medial representation, as it has been shown to be a
very useful shape prior. The method of [TZCO09] assumes
a cylindrical prior for regions of missing data, so that only a
small number of points in a cylindrical region need be used
to find a medial structure. This was extended in [LLZM10]
to better handle large gaps of missing data via a snake defor-
mation model. These methods face robustness issues when
the input fails to match the particular data prior.

Nonrigid Registration: Correspondence is a key com-
ponent in the process of registering scans of a deforming
shape, where missing data can frequently arise due to oc-
clusion, limited views, and material properties. For time-
varying capture, a number of approaches exist for computing
correspondences, where they tend to rely on the coherence
in motion between scan frames. Most of these approaches
make assumptions either on templates, the acquisition pro-
cess, or initialization. The approaches of [SWG08,LAGP09]
rely on apriori defined templates to construct correspon-
dences, since one can reliably construct geodesics on the
template, which should remain invariant across the scan-
ning sequence. The methods of [PSDB∗10,LLV∗12] rely on
multiview stereo matching to initialize the dense matching
of correspondences. Other approaches [WAO∗09, SAL∗08]
rely on point-to-plane distance correspondences, which im-
plicitly assumes that the motion between frames is small.

For a general collection of shapes, where frame-to-frame
motion coherence is lost, correspondence becomes a much
harder problem. The approach of [CZ08] relies on local
features to extract a set of candidate correspondences. In
the presence of missing data, however, it can be chal-
lenging to reliably construct local features. The methods
of [LSP08, CZ09] instead rely on an initial overlap between
point clouds, and consequently point-to-plane distance cor-
respondences. A more sophisticated approach is the method
of [HAWG08], where local features and geodesics are used
to drive spectral matching. They use a k-nearest neighbor
graph to construct geodesics, hence it is only reliable when
the lack of data is consistent across scans.

Finding Correspondences: There are a large num-
ber of techniques for finding correspondences between
well-sampled shapes, see [vKZHCO11] for an overview.
The approach of [BBK06] applies generalized multidimen-
sional scaling to find correspondences which best pre-
serve geodesic distances. A deformation model is used
in [ZSCO∗08] to measure the quality of correspondences,
where quality is defined in terms of deformation distortion.
Möbius voting [LF09] seeks to find correspondences which
best preserve the conformal structure, thus allowing for a
large space of deformations.

c© 2014 The Author(s)
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It is nontrivial to generalize the above approaches to point
clouds, as they typically require a continuous surface rep-
resentation, i.e. a triangulation. A notable exception is the
method of [OMMG10], where they show how the heat kernel
can be used to match nonrigid shapes, as the heat kernel is in-
variant to isometries. They demonstrate how their approach
can be used for partial matching, as well as its insensitiv-
ity to small topological changes. Although used for meshes,
the approach of [OMMG10] only requires a discretization
of the Laplace-Beltrami operator, and numerous such dis-
cretizations exist for point clouds, see [BSW09, LSW09].

Little work has addressed the correspondence problem in
the presence of large missing data. The work of [TBW∗09,
TBW∗12] uses geodesic distances and a RANSAC-like ap-
proach to find landmark correspondences, which subse-
quently drives a dense correspondence matcher. They em-
ploy a k-nearest neighbor graph construction to approximate
geodesics, hence they still require some coherence in the
missing data for an accurate correspondence. Perhaps most
similar to our work is [ZST∗10], where they employ the
method of [TZCO09] to build a set of skeletons, and per-
form correspondence on the skeleton graphs. In some sense,
we take an opposite approach while still using a medial axis
prior, in that we consider the full point cloud rather than a
compact skeletal graph.

3. Medial Diffusion

Our approach to constructing a diffusion process with re-
spect to the medial axis of a shape is determined via a
Laplace operator. We first discuss such a Laplace operator
on a smooth surface, which we term the Medial Laplacian.
We then detail its discretization on a point cloud, and lastly
the diffusion process itself.

3.1. Medial Laplacian

Consider an open set O embedded in R3 whose boundary is
the surface S. Every point x ∈ O is associated with a set of
points in S which are at a smallest distance to x. We denote
this set by Γ(x). The set of points x∈O for which |Γ(x)| ≥ 2
comprises the medial axis of O, which we denote by M.

The medial axis is a very descriptive object, as it is car-
ries the homotopy information of O. However, it is a rather
difficult object to utilize, as it is composed of a set of ad-
joining sheets and curves. To define a Laplace operator di-
rectly on the medial axis, one option is to construct it piece-
wise for each sheet and curve, and handle special cases at
junctions. One issue with proceeding in this way is that we
lose information with respect to the geometry of S, for in-
stance, spherical parts of varying radii are treated equally, as
are cylindrical parts of different radii.

To better capture the surface, we use Γ as a density mea-
sure. As |Γ| is nonsmooth over M, denote |Γ̃| as its smoothed

variant, defined as:

|Γ̃(x)|=
∫

S
exp
(
− d(z,Πx(z))

σ

)
dz (1)

Where Πx(z) = min
y∈Γ(x)

d(y,z), or the smallest geodesic dis-

tance d between the set Γ(x) and z. We follow the approach
of [BN08] to define a functional approximation to the Lapla-
cian, in effect using a local Gaussian as an approximation.
For a given function f defined on S we define the Medial
Laplacian ∆M over M as:

∆M f (p)= f (p)
∫

M
α(p,q)|Γ̃(q)|dq−

∫
M

f (q)α(p,q)|Γ̃(q)|dq
(2)

Where α(p,q) is a Gaussian parameterized by a sufficiently

small time scale h: α(p,q) = e−
|p−q|2

h .

We note that this is in fact a weighted Laplacian [BN08],
where |Γ̃| is used to weight regions of the medial axis in
which the number of closest points varies. Hence it is now
sensitive to the surface area of S. Note that we can also ap-
proximate ∆M as an integral over S itself. If we denote for a
given point x ∈ S its corresponding point on the medial axis
by x̂, then we define the Medial Laplacian ∆S over S as:

∆S f (p) = f (p̂)
∫

S
α(p̂, q̂)dq−

∫
S

f (q̂)α(p̂, q̂)dq (3)

Note that the density measure |Γ̃| is implicitly included in
the integration over S, since |Γ̃(x)| is the smoothed surface
area over all points Γ(x).

The Medial Laplacian is invariant to deformations on S
which isometrically preserve its medial axis, while also pre-
serving each point’s ball radius. As demonstrated in previous
work [ZSM∗05, ZST∗10], this property is often satisfied in
real-world deformations, such as varying human pose. How-
ever, it is a smaller space of deformations than isometric de-
formations of S permit, whereas if we denote the Laplace-
Beltrami operator of S by LS, it is well-known that LS is in-
variant to the space of all isometric deformations [SOG09].
Nonetheless, in the presence of missing data LS can be very
far from the Laplace-Beltrami operator of the true shape,
where as we will show, ∆S remains tolerant to missing data.

3.2. Point Cloud Medial Laplacian

We now illustrate our approach for discretizing the
Medial Laplacian on a point cloud. Consider a point
cloud P = {p1,p2, ...,pn} accompanied with normals N =
{n1,n2, ...,nn}. Normals are either directly taken from the
acquisition process, or if not available, then estimated via
PCA and oriented with a minimum spanning tree approach.

One option for discretizing the Medial Laplacian is to
consider its form defined directly on the medial axis – ∆M .
However as previously discussed, there exists numerous ap-
proaches for estimating the medial axis, and in the pres-
ence of missing data each approach has various strengths

c© 2014 The Author(s)
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Figure 2: On the left we depict the distance between medial
points α to define the Medial Laplacian ∆S, while on the
right we show medial similarity φ, as an approximation to
α. Note that φ does not require those points’ corresponding
medial axis points.

and drawbacks, hence it is unclear which to choose. More-
over, given a medial representation it is highly nontrivial to
estimate each point’s density |Γ̃|.

Hence we discretize ∆S instead, for two main reasons.
First, we do not need to define Γ, as it is implicitly included
in the integration. Secondly, we may interpret the distance
between points on the medial axis, |p̂− q̂|, as the dissim-
ilarity in medial regions between p and q. Hence it is not
necessary to explicitly measure this distance, but rather con-
struct the likelihood of two points belonging to a common
medial ball, where we follow the approach of [BS12].

For every pair of points pi and p j, we construct a candi-
date ball of center ci j and radius ri j which is representative
of a potential medial ball on which pi and p j lie. We then
measure how far away the candidate ball is from being a true
medial ball. This is decomposed into two measures: how tan-
gential is the candidate ball, denoted τ, and how empty is the
candidate ball, denoted γ:

τ(pi,p j) = |ni− si|+ |n j− s j| (4)

γ(pi,p j) = ∑
p∈P

µ(ci j,ri j,p) (5)

Here si and s j are respectively the normals on the candidate
ball at points pi and p j. The function µ is a measure of how
deep a given point p ∈ P lies inside of the candidate ball, it
increases as p approaches ci j:

µ(c,r,p) =

{
1−

( |p−c|
r
)4

if |p− c|< r
0 otherwise

(6)

We now arrive at our measure of medial similarity:

φ(pi,p j) = e−
(

γ(pi ,p j )
σe

)2
−
(

τ(pi ,p j )
σt

)2

(7)

The measure φ serves as an approximation to α, see Figure 2
for an illustration. The parameters of σe and σt are analo-
gous to the time scale h, where by increasing σe and σt we
begin to associate points whose corresponding medial axis

Figure 3: An illustration of dual area estimation for a point
p: first we gather points which belong to a similar medial
neighborhood, take these points’ convex hull, and use the
triangles incident to p to estimate its dual area.

points are further apart. We have found σe = 5 and σt = 0.7
to be suitable values, which we used for all results in the
paper.

To discretize ∆S into the point cloud Medial Laplacian ∆P,
we replace α with φ and follow the integral estimation ap-
proach of [BSW09]:

∆P f (p) = f (p) ∑
q∈P

φ(p,q)|?q|− ∑
q∈P

f (q)φ(p,q)|?q| (8)

Where |?q| denotes the dual surface area which q occupies.

Area Estimation: Crucial to an accurate discretization
is an accurate estimation of the dual area at every point.
The approach of [BSW09] defines the dual area at a point
as the area formed by its local Delaunay triangulation. In
the presence of missing data, this will effectively lead to
the preservation of the inferred boundary components. We
depart from [BSW09] and derive a more nonlocal method,
based on our candidate ball centers. The basic idea is to find
a neighborhood of points which belong to a similar medial
region, and construct a triangulation from these points in the
spirit of [BSW09], from which the dual area follows, see
Figure 3 for an illustration of the method.

For each point pi ∈ P we estimate its corresponding me-
dial axis point p̂i and radius ri by taking a weighted average
of its candidate balls’ centers and radii, respectively:

p̂i =
∑ j ci jφ(pi,p j)

∑ j φ(pi,p j)
ri =

∑ j ri jφ(pi,p j)

∑ j φ(pi,p j)
(9)

We then gather all other points p j whose estimated medial
axis points p̂ j are within a small ε:

Bi = {p j ∈ P | |p̂i− p̂ j|< ε} (10)

Where ε is fixed at 1.5 times the average sampling density of
P. Intuitively, Bi consists of points who belong to a similar
medial region of pi.

Next we take the convex hull of Bi and extract the set of
triangles incident to pi. For concave regions pi may not re-
side on the convex hull, in such situations we project all of
the points to the ball formed by (p̂i,ri), and then take its
convex hull’s triangles incident to pi. The dual area | ? pi|
follows as one-third of the area of all incident triangles.

c© 2014 The Author(s)
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Figure 4: We illustrate the behavior of medial diffusion on
the shape at the top, whose corresponding medial diffusion
is plotted over time. Note that the diffusion is sensitive to the
volume formed by the medial balls, where at a heat diffuses
faster than x, hence it has a lower medial diffusion.

3.3. Medial Diffusion

We may now construct a diffusion process from the Medial
Laplacian ∆S. The diffusion process is governed by the heat
equation, which for a given function f defined over S is:

∆S f (x, t) =−∂ f (x, t)
∂t

(11)

We may then define the operator Mt = e−t∆S , where Mt f
satisfies the heat equation for all t. Note that Mt f has the
effect of diffusing f along the medial axis.

We can now associate a function mt(x,y) with Mt such
that the following is satisfied:

Mt f (x) =
∫

S
mt(x,y) f (y)dy (12)

Intuitively, for two points x and y, mt measures the amount
of heat which has diffused between the two points in time t,
where heat diffusion is restricted over the medial axis. We
term this medial diffusion.

For a point cloud P, we approximate mt through ∆P, using
the fact that mt can be computed from the eigenvectors (Ψi)
and eigenvalues (λi) of ∆P:

mt(x,y) = ∑
i

e−λit
Ψi(x)Ψi(y) (13)

Diffusion Properties: Analogous to the heat kernel kt as-
sociated with the Laplace-Beltrami operator [SOG09], mt in-
herits the properties of its defining Laplacian ∆P. For exam-
ple, given a point x, if y ∈ Γ(x̂), then mt(x,y) will be large

Figure 5: We illustrate medial diffusion as a shape sig-
nature, similar to [SOG09], where we depict the intrinsic
symmetry of the shoulders. Note the lack of data on the
lower-right shoulder, whereas the lower-left shoulder con-
tains data, yet is still recognized as having a similar signa-
ture.

for any time t – heat will immediately diffuse between the
points. For regions containing varying ball radii, the medial
diffusion will be sensitive to the surface area, see Figure 4
for an illustration. We see that for large cylindrical regions,
the larger surface area results in fast heat dissipation, hence
mt will be low, whereas for smaller regions mt will be larger.

More importantly, the diffusion is tolerant to missing data.
Note that our association measure φ captures nonlocal re-
lationships. For regions of missing data where at least two
points indicate a medial structure, heat will diffuse in a non-
local manner. Combined with ∆P’s insensitivity to nonrigid
deformations, mt is a useful measure for identifying similar
medial regions in incomplete shapes. In Figure 5 we illus-
trate mt(x,x) as a signature over a set of time scales t, similar
to [SOG09]. Note that we are able to identify medial regions
which are invariant to the pose.

Insensitivity to Area: Returning to our area estimation
scheme, we find that dual areas can be somewhat noisy in
regions which violate the medial axis prior. However, for
our purposes, noisy areas are not too problematic, as we
can claim the perturbation results of [SOG09]. Namely, we
can write ∆P as ∆P = D−1W , where W is the symmetric
weight matrix and D is the diagonal matrix containing area
weights. Now suppose that ∆̃P = (D+F)−1(W +E), where
E and F are noise weight and area matrices, respectively,
with ‖E‖ < ε and ‖F‖ < α. Denoting M̃t as the heat opera-
tor of ∆̃P, then ‖Mt − M̃t‖= O(

√
α+ ε).

Intuitively, this means that the association measure be-
tween points, captured in W , has a larger impact on error
than the area weights D. In our experiments, we have found
that even if the estimated total surface areas between shapes
are off by 10% – 15%, this has a negligible impact on our
shape matching approach.

c© 2014 The Author(s)
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3.4. Combining Laplacians

An issue with medial diffusion is its behavior in regions of
negative curvature, where the heat will diffuse very slowly,
due to the large change in distance between medial axis
points, as a function of small change in distance over the sur-
face. This has an impact on nonrigid motion which results in
significant volume change, i.e. regions containing negative
curvature become zero or positive curvature. To address this,
we can easily combine the standard Gaussian weight α with
the medial similarity weight φ, so that the diffusion is less
sensitive to negative curvature regions. Combining Laplace
weights is common in spectral clustering, where in our sit-
uation, one may view the intrinsic geometry and the medial
axis as multiple views of the same data [ZB07].

To combine Laplacians, we adapt the approach of [ZB07].
As φ and α have widely varying densities, they must be suit-
ably normalized prior to being combined. To this end, con-
sider the weighted summations for φ and α:

dφ(pi) = ∑
j 6=i
|?p j|φ(pi,p j) dα(pi) = ∑

j 6=i
|?p j|α(pi,p j)

(14)
For a given interpolation factor η, we then combine the
weights as [BN08]:

σ(pi,p j) = (1−η)
φ(pi,p j)√

dφ(pi)dφ(p j)
+η

α(pi,p j)√
dα(pi)dα(p j)

(15)
We then replace φ in the definition of ∆P with σ.

We have used a value of η = 0.5 for all results in the pa-
per. Using this setting, we find that in most regions the me-
dial similarity term φ tends to dominate, and only in negative
curvature regions α has an impact in the diffusion.

4. Shape Matching

We now describe our approach in using mt for match-
ing shapes. We have adapted the approach of [OMMG10],
which uses the observation that, given a single landmark cor-
respondence, kt can be used to infer all remaining correspon-
dences. We apply this same methodology to mt by finding a
small set of landmark correspondences, and using them to
extrapolate a dense matching of medial regions. We depart
from [OMMG10] in how we find candidate correspondence
points, and how P is sampled in order to evaluate the error
of a potential matching. These modifications are necessary
to handle point clouds containing missing data.

Given two point clouds to be matched, P and Q, we first
uniformly subsample each with respect to the medial axis.
We follow the approach of [BS12] by performing spectral
clustering in the space of the diffusion maps formed by
∆P,and ∆Q, where we denote the resulting subsets by SP and
SQ. We found 700 points to be a sufficiently fine medial rep-
resentation. This results in a set of points whose correspond-
ing medial regions are uniformly spaced.

We then choose a point pl ∈ SP at random, and for all
points in SQ we choose the q̄l ∈ SQ whose medial diffusion
best matches pl over all points and time scales:

q̄l = argmin
ql∈SQ

∑
p∈SP

min
q∈SQ
|mP
◦(pl ,p)−mQ

◦ (ql ,q)| (16)

Where mP
◦(p,q) represents P’s medial diffusion over all

times, similarly for Q. To realize this, we follow [SOG09]
and logarithmically sample m over a discrete set of times,
where we found 25 time scales to be sufficient, and each
entry of mt(p,q) is divided by the heat trace at t. We may
then embed mP

◦(p,q) in a high dimensional space, and effi-
ciently find ql’s minimum q ∈ SQ through a kd-tree search,
where we use the l2 norm. To avoid searching all of SQ for
the corresponding landmark, we only consider the top 5%
ql ∈ SQ whose signatures mt(ql ,ql) are closest to mt(pl ,pl).
The found ql is unique up to the set of points which generate
the medial axis point q̂l. This redundancy is in part why our
approach is robust – if the exact corresponding surface point
is missing, we can instead assign a different point which gen-
erates the same medial axis point.

From this first landmark correspondence denoted (pl ,ql),
we greedily find additional correspondences via the same
procedure, restricting the newly found correspondences to
be consist with the previous ones. This is accomplished by
appending the previously found landmark coordinates to the
new ones, as in [OMMG10]. We find new landmarks in SP
by performing a farthest-point sampling defined with respect
to the diffusion map of ∆P. This has the effect of sampling
landmark points in P which are far apart in the medial axis.
We denote by L the set of landmark correspondences, where
we found a total of 5 landmark correspondences to provide
for sufficiently good results, corroborated by matching ap-
proaches [ZSCO∗08, KLF11] for well-sampled shapes.

We then use the |L| landmarks to extrapolate a dense set
of correspondences between medial regions. This is accom-
plished by finding, for each p ∈ P, the point q̄ ∈ Q in which
the medial diffusion is consistent across the respective land-
marks, as well as the signature mt(x,x) [OMMG10]:

q̄= argmin
q∈Q

L

∑
l=1
|mP
◦(pl ,p)−mQ

◦ (ql ,q)|+|mP
◦(p,p)−mQ(q,q)|

(17)

The initial randomly chosen landmark from SP may be a
rather non-descriptive feature with respect to SQ, resulting
in a poor matching. Hence we repeat this process (10 times
in our experiments), and choose the matching which gives
the lowest error in Equation 17, though a RANSAC-like ap-
proach [TBW∗09] could also be used.

5. Results

To evaluate our method, we have conducted two sets of ex-
periments. First we measure the tolerance of our diffusion
process to nonrigid motion and missing data. Secondly, we

c© 2014 The Author(s)
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Figure 6: We measure the error in medial diffusion mt across
varying missing data and pose. We show the rest pose on the
upper left, and on the upper right a subset of the poses and
point clouds on which the rest pose is measured against.

have ran our matching algorithm across a set of shapes, and
compared it with other similar shape matching methods.

We have used shapes in the SCAPE [ASP∗05],
TOSCA [BBBK08], and multi-view photometric stereo
(MVPS) datasets [VPB∗09] in our experiments. For the
TOSCA and SCAPE datasets we synthetically scan the
shapes via the method of [BLN∗11], which models a laser-
based optical triangulation scanner.

Regarding computational complexity, the largest amount
of time spent in our method is constructing ∆P. For point
clouds ranging in size from 15,000-20,000, it typically takes
5-9 minutes per shape to construct the Laplacian. Hence for
all point clouds used we have subsampled them to within this
range via farthest point sampling.

5.1. Tolerance to Missing Data

We first evaluate the quality of our method under vary-
ing pose and missing data. One way of achieving this is
to extract the medial axis of a shape, and measure the
geodesic distance distortion along the medial axis. How-
ever, the medial axis is well-known to be rather unstable,
and the specific medial axis simplification approach to take
(i.e. [CL05, MGP10]) is unclear.

Instead, we measure the error in mt , in order to observe

Figure 7: We show detected intrinsic symmetries between
medial regions for point clouds containing missing data.

the consistency across pose and missing data. We use the
SCAPE dataset, as ground truth correspondences are known.
For a given SCAPE mesh, we synthetically scan it over a
constant set of viewpoints via [BLN∗11]. We parameterize
the peak threshold at which range is accepted based on the
laser intensity, giving us a controllable yet realistic means of
generating missing data. For a given well-sampled rest pose
P, we measure the medial diffusion error on an input point
cloud Q as:

E(P,Q)=
1
|C||T | ∑

t∈T

(
∑

(x,y)∈C
|mt(x,y)−mt( f (x), f (y))|2

) 1
2

(18)
Where C is a set of pairs of points uniformly sampled over
Q, T is the set of logarithmic time scales, and f is the ground
truth mapping function between Q and P.

See Figure 6 for the results. As shown, mt remains quite
stable as missing data is introduced, over varying pose. Only
when large gaps of data begin to appear does the error in mt
begin to increase. At these levels, the impact of the different
poses becomes evident, as the rest pose contains the lowest
error.

5.2. Intrinsic Symmetries

The detection of intrinsic symmetries follows as a straight-
forward extension of the shape matching method – rather
than compare two shapes, we employ mt on the same point
cloud. Note that intrinsic symmetries in our situation refer
to points along medial regions being invariant to a non-rigid
self transformation. We visualize these correspondences by
using the estimated medial ball centers p̂i.

See Figure 7 for results on several shapes. Note that the
front left leg of the cat point cloud is a separated component
from the body, yet due to our method’s nonlocal diffusion
we can still detect its symmetry with the front right leg.

5.3. Shape Matching

We now evaluate our matching approach across a set of
shapes, compared with several approaches. To visualize the

c© 2014 The Author(s)
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Figure 8: Correspondence results on the SCAPE dataset. On
the top left pair, note the absence of data on the left shape’s
stomach – we are able to infer that the back of the left shape
and the stomach of the right shape share a medial region.

correspondences, for each point pi on the left shape we as-
sign it a color based on the position of its estimated medial
ball center p̂i, and assign this same color to its corresponding
point on the right shape.

Figure 8 shows our matching results on several shapes
from the SCAPE dataset. As shown, our method is able to
properly find landmark correspondences, and extrapolate a
dense mapping between the shapes, despite the lack of data.
In particular, note that the missing data is not consistent be-
tween the pairs of shapes, i.e. missing data occurs in differ-
ent regions. Our method is shown to remain highly tolerant
to these imperfections.

Figure 9 shows results for matching two different poses of
the cat model from the TOSCA dataset. In the inset we de-
pict the similarities of the medial diffusion signature mt(x,x)
across the two point clouds. Note that the head of the left cat
is a separated component from the rest of the body, yet we
are still able to associate similarity to the neck of the right
cat, despite the neck noticeably absent on the left cat.

In Figure 10 we compare our method with the skeleton
extraction approach of [TZCO09] – the skeleton graphs used
in [ZST∗10]. The compactness in the representation theoret-
ically makes matching easier, yet as shown in the left shape,
a node representing the head is absent, while an additional
joint is introduced near the elbow, which makes matching
rather ill-posed – it is unclear which to keep and which
to prune. Our method incurs no such drawback by instead
operating on the entire point cloud. Furthermore, note our

Figure 9: Correspondences for a pair of cat point clouds
from the TOSCA dataset. In the inset, we depict the differ-
ences in the signature mt(x,x), color-mapped across the two
shapes. Note the signature’s insensitivity to the lack of data.

method’s ability to match medial sheets, shown across the
chest, where by construction this is lost in [TZCO09].

Last, we have compared our method to the heat ker-
nel matching approach of [OMMG10]. As [OMMG10] was
originally designed for meshes, we instead use our strategy
for finding candidate landmark points. We use the color-
mapped positions pi to visualize their correspondences. See
Figure 11 for the results. As shown, the heat kernel match-
ing approach faces difficulty in finding landmark points
for the SCAPE point clouds, hence the extrapolated cor-
respondences are rather inaccurate. Our approach remains
tolerant to the missing data. For the MVPS data, we see
that [OMMG10] is able to properly find landmark corre-
spondences for the “Abhijeet” sequence, yet the extrapolated
correspondences are still imperfect. Our approach is able to
properly match the right shoulder and head.

5.4. Limitations

Although our method can handle a large range of incomplete
shapes, it can perform poorly when the medial axis prior is
not adequately satisfied. In particular, when the missing data
is large relative to the size of the medial balls, then we may

Figure 10: A comparison of our approach with skeletons ex-
tracted via [TZCO09]. Note the inconsistencies in the graph
skeletons, which renders such matching rather ill-posed.
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Figure 11: A comparison of our method with [OMMG10]. Note how we are able to find landmarks and good-quality
extrapolated correspondences, whereas significant differences in the intrinsic structures of the shapes can pose problems
for [OMMG10].

infer two separate connected components. In such situations
it is difficult to construct a shape prior which this resembles,
hence stronger priors such as templates may be necessary.

Like many other shape matching methods, our ap-
proach is vulnerable to symmetric flips [OHG11].
As the inset shows, our method
can become confused by the
inherent bilateral symmetry.
However, it should be possible
to use either a deformation-
driven approach [ZSCO∗08],
or combining a collection of
matches [KLF11], in order to
resolve this limitation.

Our method is fairly robust to deformations resulting in
small changes to volume, but significant volume change can
be problematic. For instance, substantial folding of cloth or
fluid motion can result in drastic, non-isometric changes to
the medial axis. Constructing a measure which is tolerant to
such deformations, as well as incomplete data, is a challeng-
ing and important area for future work.

6. Conclusions

We have presented a method for matching incomplete shapes
undergoing nonrigid motion. Our main contribution is the
construction of a diffusion process on the point cloud which
measures heat diffusion along the medial axis. As the medial
axis is a strong prior for missing data, we have shown how

heat diffuses in a nonlocal manner, insensitive to both non-
rigid motion and missing data, and how this may be used for
matching incomplete shapes.

For future work, we would like to explore applications
of our correspondences. In particular, correspondences be-
tween medial regions should benefit volume-based applica-
tions such as co-segmentation, style transfer, and shape re-
trieval. We also intend to investigate the theoretical prop-
erties of our construction of the Medial Laplacian. For in-
stance, we would like to obtain a more explicit relationship
between our medial dissimilarity measure and the distance
between points on the medial axis.
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PAULY M., RUSINKIEWICZ S.: Temporally coherent completion
of dynamic shapes. ACM Transactions on Graphics (TOG) 31, 1
(2012), 2. 2

[LLZM10] LI G., LIU L., ZHENG H., MITRA N. J.: Analy-
sis, reconstruction and manipulation using arterial snakes. ACM
Trans. Graph. 29 (December 2010), 152:1–152:10. 2

[LSP08] LI H., SUMNER R., PAULY M.: Global correspondence
optimization for non-rigid registration of depth scans. In Com-
puter Graphics Forum (2008), vol. 27, pp. 1421–1430. 2

[LSW09] LUO C., SUN J., WANG Y.: Integral estimation from
point cloud in d-dimensional space: A geometric view. In Pro-
ceedings of the 25th annual symposium on Computational geom-
etry (2009), ACM, pp. 116–124. 3

[MGP10] MIKLOS B., GIESEN J., PAULY M.: Discrete scale axis
representations for 3d geometry. ACM Transactions on Graphics
(TOG) 29, 4 (2010), 101. 2, 7

[OHG11] OVSJANIKOV M., HUANG Q., GUIBAS L.: A condi-
tion number for non-rigid shape matching. In Computer Graph-
ics Forum (2011), vol. 30, pp. 1503–1512. 8

[OMMG10] OVSJANIKOV M., MÉRIGOT Q., MÉMOLI F.,
GUIBAS L. J.: One point isometric matching with the heat ker-
nel. Computer Graphics Forum 29, 5 (2010), 1555–1564. 1, 2,
3, 6, 8, 9

[PSDB∗10] POPA T., SOUTH-DICKINSON I., BRADLEY D.,
SHEFFER A., HEIDRICH W.: Globally consistent space-time
reconstruction. In Computer Graphics Forum (2010), vol. 29,
pp. 1633–1642. 2

[SAL∗08] SHARF A., ALCANTARA D., LEWINER T., GREIF C.,
SHEFFER A., AMENTA N., COHEN-OR D.: Space-time surface
reconstruction using incompressible flow. In ACM Transactions
on Graphics (TOG) (2008), vol. 27, ACM, p. 110. 2

[SOG09] SUN J., OVSJANIKOV M., GUIBAS L.: A concise and
provably informative multi-scale signature based on heat diffu-
sion. In Computer Graphics Forum (2009), vol. 28, pp. 1383–
1392. 3, 5, 6

[SWG08] SÜSSMUTH J., WINTER M., GREINER G.: Recon-
structing animated meshes from time-varying point clouds. In
Computer Graphics Forum (2008), vol. 27, pp. 1469–1476. 2

[TBW∗09] TEVS A., BOKELOH M., WAND M., SCHILLING A.,
SEIDEL H.: Isometric registration of ambiguous and partial data.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on (2009), Ieee, pp. 1185–1192. 3, 6

[TBW∗11] TEVS A., BERNER A., WAND M., IHRKE I., SEIDEL
H.-P.: Intrinsic shape matching by planned landmark sampling.
Computer Graphics Forum 30, 2 (2011), 543–552. 1

[TBW∗12] TEVS A., BERNER A., WAND M., IHRKE I.,
BOKELOH M., KERBER J., SEIDEL H.: Animation cartography
- intrinsic reconstruction of shape and motion. ACM Transactions
on Graphics (to appear) 31, 2 (2012). 3

[TZCO09] TAGLIASACCHI A., ZHANG H., COHEN-OR D.:
Curve skeleton extraction from incomplete point cloud. ACM
Trans. Graph. 28 (July 2009), 71:1–71:9. 2, 3, 8

[vKZHCO11] VAN KAICK O., ZHANG H., HAMARNEH G.,
COHEN-OR D.: A survey on shape correspondence. Computer
Graphics Forum 30, 6 (2011). 2

[VPB∗09] VLASIC D., PEERS P., BARAN I., DEBEVEC P.,
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