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Abstract
We introduce the medial kernel, an association measure which provides for a robust construction of volume-aware
distances defined directly on point clouds. The medial kernel is a similarity measure defined as the likelihood of
two points belonging to a common interior medial ball. We use the medial kernel to construct a random walk on
the point cloud, where movement in the walk is restricted to regions containing similar medial balls. Our distances
are defined as the diffusion distances of this random walk, assigning low distance to points belonging to similar
medial regions. These distances allow for a robust means of processing incomplete point clouds, capable of distin-
guishing nearby yet separate undersampled components, while also associating points which are far in Euclidean
distance yet mutually share an interior volume. We leverage these distances for several applications: volumet-
ric part segmentation, the construction of function bases, and reconstruction-by-parts – a surface reconstruction
method which adheres to the medial kernel.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Advancements in the acquisition of 3D geometry have re-
sulted in the massive proliferation of point clouds. Modern
3D scanners typically acquire point clouds with precise mea-
surement in very little time. However despite these advances,
sparse and incomplete data can still be present in the acquisi-
tion process. This can be due to the complexity of the shape
resulting in occlusion, a wide baseline used in the acquisition
such as in stereo systems, or resource constraints resulting in
a limited number of scans.

Surface reconstruction in the presence of such data is
quite challenging. Methods which employ general smooth-
ness priors [CBC∗01, KBH06] are only effective when the
priors match the missing data. As a result, much recent
work has focused on exploiting the structure of missing
data, in order to properly steer surface reconstruction to-
wards a geometric and topologically faithful shape. This
can be seen in the recent works of point cloud skele-
tonization [TZCO09, LLZM10], repetitive structure detec-
tion [ZSW∗10], visibility carving [SSZCO10], and primitive
shape relationships [LWC∗11]. At some level, all of these
approaches utilize a notion of distance with respect to the
original point cloud. This may come in the form of k near-
est neighbors, ball neighborhoods, and variations which em-
ploy normals and primitive shapes. In the presence of miss-

ing data, distance measures which respect the original shape
are essential for the success of these methods.

We directly tackle the problem of constructing robust dis-

Figure 1: From the input point cloud (left) we show dis-
tances derived from the medial kernel, where the arrow high-
lights the source point. Note the clear separation between
the fingers. We use these distances to properly guide surface
reconstruction (right).
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Figure 2: An overview of our approach. From the input point cloud (left), our main contribution is the construction of distances
defined directly on the points (middle), where distance represents the likelihood of two points lying on a medial ball. Note the
insensitivity to undersampling and missing data. We leverage these distances for several applications, shown on the right.

tances for point clouds. We introduce the medial kernel, an
association measure which provides for a robust construc-
tion of volume-aware distances. To motivate our approach,
consider the set of interior medial balls of a surface, that is,
balls which are equidistant and tangential to at least two sur-
face points, maximally empty, and inside of the shape. Note
that for a smooth surface, the set of medial balls can be rep-
resented as a collection of disconnected cliques, where all
points which generate a medial ball form a single clique.

For imperfect point clouds containing missing data, find-
ing such cliques can be a challenging task. We instead define
a kernel on the point cloud, a symmetric nonnegative associ-
ation measure between every pair of points [CL06]. The ker-
nel measures the likelihood of two points lying on a common
interior medial ball – our so-called medial kernel. The me-
dial kernel induces a random walk on the point cloud, such
that movement in the walk is restricted to regions contain-
ing similar medial balls. In particular, if a subset of points
exclusively has a large association according to the medial
kernel, then for a sufficiently large time scale the random
walk will only permit movement within this subset, effec-
tively forming a clique. Our distance construction follows as
the diffusion distances [CL06] of this random walk, where
two points contain low distance if they are highly connected
in terms of walking along similar medial balls.

Our primary assumption on the input is that there exists
sufficient data to indicate a medial structure. As long as this
is satisfied, our distance construction is capable of recov-
ering the medial representation through associating points
which belong to similar medial regions. See Figure 1 for an
illustration of these distances, demonstrating our kernel’s ca-
pability to discern the fingers of the hand, despite their close
proximity in Euclidean distance and undersampling.

We leverage our medial kernels for several applications
– see Figure 2 for an overview. The distances induced by
the kernel provide for a simple method of segmenting the
point cloud into coherent volumetric parts, even in the pres-

ence of missing data. The medial kernel can be used to
construct function bases, where projection onto this basis
serves to average function values along medial regions. We
use this for surface reconstruction in the presence of miss-
ing data. Lastly, we combine these two methods to perform
reconstruction-by-parts, a reconstruction method which ad-
heres to the volume indicated by the medial kernel.

2. Related Work

Our approach spans several different areas, each of which
we will only discuss the most relevant work due to the lack
of space.

Surface Reconstruction: A vast amount of work has
been dedicated to surface reconstruction over the past two
decades. In the context of handling incomplete point clouds,
most existing approaches utilize smooth priors. These range
from Poisson surface reconstruction [KBH06], to radial ba-
sis functions (RBFs) [CBC∗01, OBS04] and partition-of-
unity [OBA∗03, NOS09]. Recent reconstruction methods
have become more specialized, in order to target specific
shapes and specific structures in missing data.

Skeleton extraction from incomplete point clouds has seen
much work [TZCO09, CTO∗10, LLZM10]. For the methods
of [TZCO09,LLZM10], under generalized cylindrical priors
reconstruction may be accomplished, but shapes deviating
from this prior pose difficulties. The work of [CTO∗10] pro-
duces skeletons for a more general class of shapes, but re-
sampling missing regions which lack a cylindrical structure
still remains a challenge.

Cone carving [SSZCO10] uses visibility cones to prop-
erly guide external dipoles for RBF reconstruction. While
they produce compelling reconstructions, their approach is
sensitive to point splatting, where correct local neighbor-
hoods can be difficult to determine. Our distance construc-
tion should serve to aid their point splatting by discarding
the influence of neighboring parts.

c© 2012 The Author(s)
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Similar to our work is [TOZ∗11], where they employ vol-
umetric smoothness priors to handle missing data. Our dif-
fusion of medial similarity is also based on an assumption of
volumetric smoothness, but we carry out the diffusion alge-
braically, rather than geometrically.

Medial Representations: Substantial work has been ded-
icated to extracting medial representations from surfaces,
see [SP08] for a thorough overview. One line of work is in
representing the surface as the union of medial balls, where
various representations may be accomplished by proper scal-
ing/filtering of the medial balls [MGP10]. Such methods rely
on extracting a subset of the Voronoi diagram, which is well-
defined for ε-sampled surfaces, but for point clouds contain-
ing missing data the subcomplex of the Voronoi diagram
may no longer resemble the medial axis, see [SSZCO10] for
an illustration.

In moving away from provably-good approaches, one can
obtain more robust methods for medial representations. The
shape diameter function [SSCO08] focuses on capturing the
overall thickness of the volume, while the part-aware surface
metric [LZSCO09] extends this to constructing a volume-
dependent metric over the faces of a mesh. Though one may
apply such methods to meshes with boundaries, and effec-
tively discard ray samples which do not intersect the surface,
for missing data in multiple parts one can easily obtain false
volume information. Our construction of the medial kernel
is perhaps most aligned with these methods, in that we do
not seek exact medial balls, but rather approximations and a
continuous measure of how far a ball is from medial.

Distances: The construction of distances on surfaces has
received much attention as of late. In the case of watertight
surface meshes, a slew of useful distances exist, ranging
from geodesics, diffusion distances [CL06], killing vector
fields [SBCBG11], and biharmonic distances [LRF10], to
name a few. These distances are quite useful for performing
various shape processing tasks such as segmentation, shape
matching, and function interpolation.

For point clouds containing missing data, however, these
distances face several problems. As most share the neces-
sity to discretize the Laplace-Beltrami operator on a surface,
one may use a method such as [BSW09] for this purpose.
But due to isometry-invariance, in the best case the resulting
distances will respect the boundary components stemming
from the missing data, while in the worst case false connec-
tions can result in a fundamentally different, topologically
incorrect shape representation.

The work of [CK11] shares similar goals with us, where
they employ morphological operators to obtain a watertight
representation on which to then construct geodesic distances
with respect to the original input. However, dilation/erosion
can lead to a topologically incorrect representation, particu-
larly in the presence of nearby surface sheets. Our distances
should serve to benefit [CK11], by properly steering these
morphological operations.

Our approach is inspired by [LCDF10], where distances
are constructed on point clouds encoding how symmetric two
points are. They observe that points belonging to the same
symmetry orbit form cliques in a graph, where by looking at
the diffusion distances of a kernel which continuously mea-
sures symmetry similarity, one may easily detect these or-
bits. They illustrate the benefits of working with symmetry-
factored distances over symmetry-induced transformations –
we leverage the same idea for working with medial-factored
distances instead of medial balls.

3. Overview

Before going into the details of our approach we present
a brief 2D example illustrating the intuition behind our
method, see Figure 3.

Consider the sampled 2D curve on the left-hand side of
Figure 3. In observing its set of medial balls, we find that
there exists a total of five – two medial balls capping the ends
of the shape, and three medial balls towards the center. This
information may be encoded as a correspondence matrix C,
where Ci j is 1 if points i and j belong to the same medial
ball, and 0 otherwise. Interpreting C as an adjacency graph,
the block structure reveals that we have a disconnected col-
lection of cliques, one clique for every medial ball.

Note that the medial axis can be represented through the
spectral properties of C. Under a suitable orthogonal trans-
formation, the eigenvectors of C serve as indicator func-
tions for each medial ball, where for a given eigenvector
its nonzero function values group points which lie on the
same medial ball. The nonzero eigenvalues of C represent
the number of points belonging to a medial ball. If we row-
normalize C to obtain Ĉ, then the multiplicity of eigenvalue
with magnitude 1 is the number of medial balls, and conse-
quently the rank of C is the number of medial balls.

Now consider a slight perturbation of this shape, com-
posed of a set of points P = {p1,p2, ...,pk} with accom-
panying normals N = {n1,n2, ...,nk}, where the structure
of the cliques is imprecise, see the middle of Figure 3. In
this scenario we would like to best recover the cliques and
group points which contain a similar medial structure. In
other words, we want to approximate the matrix C. Our ap-
proach for approximating C is to construct, for a given pair
of points in P, a similarity measure representing the likeli-
hood of these two points lying on a medial ball. We call this
similarity measure the medial kernel, denoted φ : P×P→R.

Given a pair of points pi,p j ∈ P with normals ni,n j, we
construct the medial kernel in two steps. First, we generate
a candidate ball, a representative medial ball for (pi,p j) be-
ing equidistant to pi and p j and whose normals at the points
are similar to ni and n j. Next, we define a measure of me-
dial dissimilarity, or how far away the candidate ball is from
being medial. Following the definition of a medial ball, for
a candidate ball this is decomposed into two measures: how

c© 2012 The Author(s)
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Figure 3: Overview of the medial kernel construction. The clean point set and its set of medial balls illustrates the block
structure we would like to recover on the noisy point set. Our medial kernel approximates such correspondences, by measuring
the likelihood in which two points contain a medial ball. Note the similarities in spectra between the clean and noisy point sets.
We exploit this by applying diffusion distances to the medial kernel to recover the block structure and correspondences.

far from tangential with respect to ni and n j, and how empty.
Emptiness is a function of the number of points residing in-
side of the ball, and how close they are to the ball center.
We then convert this dissimilarity measure into a similarity
measure to obtain the medial kernel, see the right side of
Figure 3.

From the medial kernel φ(·, ·) we arrive at our approxima-
tion to C, the matrix M : Mi j = φ(pi,p j). Note that nonuni-
form sampling, positional noise, and normal noise manifests
as noise in M. However, similar to [LCDF10], we find that
M’s row normalized matrix M̂ largely inherits the spectral
properties of Ĉ. This can be seen in the eigenvalues of M̂
where its top five eigenvalues reside near 1, and all others
quickly converge to 0 – a consequence of the rank deficiency
of M. This indicates the existence of five medial balls.

For any shape with a well-defined medial axis, M should
exhibit rank deficiency, and we seek to define distances
which respect this low rank structure. Note that the medial
kernel induces a particular random walk on the point cloud,
where for large time scales points walk along similar medial
regions. Moreover, a set of points which exclusively contain
high associativity in the medial kernel will remain “stuck”
in the walk, only moving between each other. Our distance
construction follows as the measure of connectedness in this
random walk: the diffusion distances [CL06] of M, see the
right side of Figure 3. Diffusion distances are a natural tool
for recovering such a low-rank structure, in our case group-
ing together points which mutually contain a similar medial
region. Note that unlike the eigenvectors of M, the diffusion
distances are invariant to any orthogonal transformation of
its eigenspaces [LCDF10]. Observe on the far right that for
t = 20 we recover the original block structure of C, grouping
points which contain similar medial balls.

4. Medial Kernel Construction

Here we describe the details of the medial kernel construc-
tion. The medial kernel associates similarity to a pair of

points based on the likelihood of such points containing a
medial ball. We construct this by first generating a candidate
ball for the points, and then measure how far away this ball
is from being a medial ball.

Our construction requires oriented normals N, where we
compute normal directions from the input point set P via
PCA. If P is obtained from a scanner we use the individ-
ual scans to best orient N, otherwise if scan information is
unavailable we propagate normal orientation via a minimal
spanning tree approach.

4.1. Candidate Ball Generation

For points pi and p j with normals ni and n j, we want its
candidate ball to best represent an interior medial ball. This
implies that the center ci j lies on the bisecting plane of the
points, while the normals of the ball at pi and p j respectively
coincide with ni and n j.

To this end, we intersect the lines formed from the points
and normals against the bisecting plane to obtain intersec-
tion points xi and x j. We discard balls if either intersection
is along the positive direction of their normal, indicative of a
ball lying in the exterior of the shape, or if both lines fail to
intersect the bisecting plane. We would like to have the ball
normals at pi and p j mutually satisfy ni and n j, but at sharp
features this can produce balls of arbitrarily large radius.
The inset depicts such a situation, where the
right point’s normal line fails to intersect the
bisecting plane, shown as the dashed black
line. Hence we relax this requirement by addi-
tionally considering the balls formed by the in-
dividual intersection points. This corresponds
to the left point’s normal intersection with the bisecting
plane. So from the points {xi,

xi+xj
2 ,x j}, we take the can-

didate ball center ci j as the one with minimal radius, which
by construction is equidistant to pi and p j. Such a hard con-
straint on point equidistance and soft constraint on normal
agreement expresses our precedence for point positions over
point normals, since normal estimation is often imperfect.

c© 2012 The Author(s)
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4.2. Medial Dissimilarity

From the candidate ball, we measure its deviation from a
medial ball in two measures: one measures emptiness, while
the other measures how tangential.

γ(pi,p j) = ∑
p∈P

µ(ci j,ri j,p) (1)

τ(pi,p j) = |ni − si|+ |n j − s j| (2)

Here si and s j are the normals of the candidate ball at points
pi and p j, and µ is the ball distance measure, measuring
how close a point p lies from the center of the candidate
ball ci j. We would like µ to satisfy the following properties:
scale-invariance, slow falloff, and computational efficiency.
Scale-invariance implies that the distance measure is rela-
tive to the radius of the candidate ball. We want to prescribe
a falloff to µ such that points closer to the candidate ball cen-
ter contribute more, indicative of the ball deeply penetrating
the surface. Lastly, µ should be defined such that its summa-
tion over all points may be performed efficiently and exactly.

To this end, we define µ as follows:

µ(c,r,p) =

{
1−

(
|p−c|

r

)4
if |p− c| < r

0 otherwise
(3)

We find that this quartic falloff is suitable for penalizing
points which belong in the deep interior of a candidate ball.

Naively evaluating the dissimilarity measure, even using
a spatial acceleration structure, can still be linear in the num-
ber of points for balls with large radius. However, note that
µ can be expanded such that it is linear in c and powers of
c. To take advantage of this, we construct a kd-tree over P
and for each node, precompute its corresponding expansion
coefficients over all points which belong to that node. Then
in evaluating Equation 2, if a node of the kd-tree is com-
pletely contained within a candidate ball, then applying the
linear expansion is equivalent to individually summing over
all points.

4.3. Medial Kernel

From the measures γ and τ we may now define the medial
kernel φ, effectively converting medial dissimilarity into a
similarity measure:

φ(pi,p j) = e
−

(
γ(pi ,p j )

σe

)2

−
(

τ(pi ,p j )
σt

)2

(4)

Where σe and σt define bandwidths for the emptiness and
tangential measures, respectively. We have set σe = 2 and
σt = 0.7 for all results in the paper, unless otherwise speci-
fied. We perform this measure over all point pairs to arrive at
the similarity matrix M : Mi j = φ(pi,p j), where each entry
encodes how likely the point pair contains a medial ball.

In practice we find most entries of M to have small magni-
tude – a function of the complexity of the medial axis. Hence

we set Mi j to 0 if Mi j < 10−7, resulting in M typically being
quite sparse. We use this sparsity to employ an early ter-
mination in the traversal of the kd-tree for computing the
emptiness measure γ, allowing us to quickly discard point
pairs which are highly dissimilar.

The matrix M can be quite noisy. For instance, since we
have a hard constraint on equidistance in candidate ball gen-
eration, two adjacent points lying on a plane will result in a
ball with unbounded radius, and consequently low similar-
ity. However, if two such points mutually share other points
which have a high similarity, then there is a strong likelihood
that these points belong to the same medial ball.

As discussed in Section 3, the diffusion maps of M cap-
ture this similarity, in the form of measuring the connected-
ness of random walks defined via the medial kernel. To this
end, consider the matrix M̂ taken as the row-normalization
of M, as suggested by [CL06, LCDF10]. It has an eigen-
decomposition of the form M̂ = V ΣUT , where its eigen-
values and left/right eigenvectors are real-valued. Letting
V = [Ψ1 Ψ2 · · · Ψk], the resulting diffusion map at point
pi under a time scale t is:

Φt(pi) = {λ
t
1Ψ1(pi),λ

t
2Ψ2(pi),λ

t
3Ψ3(pi), ...} (5)

The diffusion distances directly follow from Φ:

d2
t (pi,p j) = |Φt(pi)−Φt(p j)|2 (6)

Unless otherwise specified we used a time scale of t = 160
for all results, which we found to be a conservative time scale
as useful distances are typically achieved at smaller times.
Due to the large time scale used, we found it necessary to
only retain the top 300 eigenvectors, and since M is sparse
this can be computed efficiently via ARPACK.

See Figure 4 for several examples of diffusion distances
of the medial kernel. Note how the distances relate points
which have high likelihood of belonging to an underlying
medial ball, for both well-sampled shapes and single range
scans alike. Figure 5 illustrates our ability to handle the case
of two nearby planar surface sheets. Note that although ad-
jacent planar points are initially dissimilar, under a suitable

0 1

Figure 4: Diffusion distances derived from the medial ker-
nel from various source points for a variety of point clouds,
ranging from fully-sampled meshes to single range scans.

c© 2012 The Author(s)
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front

back

Figure 5: Distances constructed on thin planar sheets. Al-
though adjacent points to x are initially dissimilar, diffusion
distances capture the association from the other side of the
surface for suitably large times.

time-scale we are able to capture the similarity, indicative of
a medial ball lying between the surface.

Figure 6 shows the kernel’s robustness to missing data and
noise. Note that noise is both positional and normal, since
we compute normals from the points via PCA. This is a par-
ticularly challenging model as the foot resides directly next
to the leg of the dancer, with missing data between the two
parts. As noise increases, our method is still able to associate
similarity to points occupying similar volume, as points on
the back of the leg contain small distance to the source point.

5. Applications

We illustrate several applications of the medial kernel: seg-
menting a point cloud into volumetric parts, “medializing”
functions by deriving a function basis from the medial ker-
nel, and reconstruction-by-parts.

5.1. Volume-Aware Segmentation

For large time scales, the diffusion distances of the medial
kernel serve to associate similarity to points which contain
smoothly varying volumetric emptiness. Based on this ob-
servation, we can easily perform point cloud segmentation

Figure 6: The performance of our medial kernel under miss-
ing data and increasing noise. Note that the source point
contains low distance to points occupying similar volume.

using the medial kernel, where points are segmented into
clusters occupying similar volumes.

We achieve this segmentation by performing k-means on
the diffusion maps, defined by Equation 5. We normalize
the coordinates prior to clustering, similar to existing meth-
ods [ZMP04, SBCBG11]. The resulting segmentation is not
intended to be a semantic part decomposition, but rather a
decomposition into simple and coherent volumetric parts. In
particular, the main contribution is segmentation in the pres-
ence of missing data, see Figure 7 for an illustration. The
segmentation properly clusters the palm into separate parts,
separating it from the two fingers despite the fact that there
exists no data underneath the fingers.

5.2. Medial Basis

In addition to constructing random walks, the medial ker-
nel can also be used to define a basis from which to project
functions onto, in a similar manner to [LCDF10]. In partic-
ular, powers of the matrix M̂ correspond to a family of such
bases, where for a large t, M̂t serves to effectively reduce the
numerical rank of M̂. Recall that the numerical rank of M̂t

reflects the complexity of the shape’s medial axis. The linear
subspace of functions spanned by M̂t correspond to func-
tions which are constant along medial balls. Hence, for an
arbitrary function f its projection onto M̂t serves to diffuse
function values along medial balls, in the process “medializ-
ing” f .

More specifically, from the diagonalization of M̂ =
V ΣUT , suppose we have the set of right eigenvectors U =
[Θ1 Θ2 · · · Θk]. Powers of M̂ may be expressed as:

M̂t = ∑
i

Ψiλ
t
iΘ

T
i (7)

Then the projection of f onto M̂t is:

M̂t f = ∑
i

Ψiλ
t
i〈ΘT

i , f 〉 (8)

Diffusion of Union of Balls (DUB): In considering useful
functions to medialize, we observe that one should choose

front back

Figure 7: Segmentation results on a hand point cloud (left).
Note that the knuckle of the ring finger is properly associated
with the palm, despite the lack of data on the palm.

c© 2012 The Author(s)
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functions which are naturally invariant to the medial basis,
yet are initially noisy. The union of balls [MGP10], i.e. the
set of interior medial balls, is thus a natural candidate. This
provides us with a simple yet robust method for reconstruc-
tion, which we term the Diffusion of Union of Balls (DUB).

In our approximate scenario, we derive the initial set of
balls from our construction of the kernel. For a given point
pi, we define its initial ball [ci,ri] as:

ci =
∑ j ci jφ(pi,p j)

∑ j φ(pi,p j)
ri =

∑ j ri jφ(pi,p j)

∑ j φ(pi,p j)
(9)

Assuming that c and r refer to the set of ball centers and
radii defined over the point set, respectively, then its diffu-
sion over the medial basis is: ct = M̂tc and rt = M̂tr.

As long as there exists sufficient evidence of
a volume, we find that DUB is quite effective
at preserving the overall volume of the shape.
Refer to the inset for an illustra-
tion, where we apply DUB for
times t = 0 and t = 5. Note how
despite the missing data, by pro-
jecting onto M̂ we are able to suf-
ficiently smooth out the noise. We
note that this method is similar to
VASE [TOZ∗11], in that we both rely on smoothness in the
volume to diffuse a medial representation. However, we de-
fine a diffusion operator on the point cloud, rather than an
intermediate mesh representation.

5.3. Reconstruction by Parts

Although DUB is effective when the initial set of balls is
noisy, if the basis is also noisy then the diffusion can pro-
duce undesirable results due to the contamination of dissim-
ilar balls. The mid-left image of Figure 8 depicts the situ-
ation, where false positives exist between the hand and the
body of the dancer, causing a tunnel to appear in the recon-
struction. However, this is precisely what our segmentation
method resolves: the clustering of the point cloud into co-
herent volumetric parts. Hence it is natural to combine the
two methods, resulting in a surface reconstruction method
which performs reconstruction-by-parts. See Figure 8 for an
illustration.

We first segment the point cloud into volumetric compo-
nents via k-means. The number of clusters should be large
enough so that nearby parts are separated, yet not so big that
there exists an insufficient number of points to represent a
volume. For most shapes this range is typically quite large,
however, and for all results in the paper we found 20− 30
segments to be sufficient. We next pad each segment out
with points belonging to other segments which are close in
terms of our medial-factored distances. We achieve this by
performing a k-nearest neighbors query with respect to the
diffusion map across all of the points in a segment, adding
points which belong to different segments. We choose k = 25

Figure 8: From the point cloud on the left, we first show the
reconstruction through Diffusion of Union of Balls (DUB)
on the entire point cloud, followed by projection (mid-left).
Note the tunnel introduced due to false positives in our ker-
nel. By segmenting the point cloud (mid-right) and then per-
forming reconstruction-by-parts, we produce a topologically
accurate reconstruction (right).

in our implementation, which we have found to provide for
sufficient overlap between segments.

We then apply DUB to each segment, to obtain a collec-
tion of union of balls. Our volumetric segmentation ensures
that each DUB-reconstructed segment encompasses a proper
volume of the shape, where we found time scale t = 4 to
provide for a smooth yet geometrically faithful representa-
tion for each segment. We then take the union of the union
of balls as our reconstructed mesh. Namely, we treat all of
the union of balls as an implicit surface and isosurface to ob-
tain the reconstructed mesh. Since we are padding each seg-
ment with points in nearby segments (with respect to medial-
factored distances), there exists sufficient overlap between
individual reconstructions to form a single component.

The resulting mesh is slightly shrunken due to the dif-
fusion process. We obtain the final reconstruction by in-
terleaving MLS projection (via Algebraic Point Set Sur-
faces [GG07]) and least squares meshes [SCOIT05], applied
to the vertices of the mesh, in a similar manner to [SLS∗06].
We depart from [SLS∗06] by restricting the projection step
to the individual clusters, in order to prevent projection is-
sues associated with undersampling of the point cloud.

6. Results

We compare our approach to kernel methods regarding dis-
tances and segmentation, as well as to reconstruction meth-
ods. Most point clouds used in the paper have been acquired
either through NextEngine or Kreon scanners, and conse-
quently downsampled through farthest point sampling. No
data smoothing is employed in the downsampling, we use
the original points and normals.

Kernel Methods: We first compare the diffusion dis-
tances of our medial kernel to a more standard kernel,
namely the feature-preserving kernel of [OAG10] which ap-
proximates the heat kernel for point clouds. Note that the

c© 2012 The Author(s)
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MK HKMK HK

Figure 9: A comparison of distances between our kernel
(MK) and the kernel of [OAG10] (HK), both under large-
time diffusion distances. Note that the kernel of [OAG10]
can leak into other parts of the shape (left) while not ade-
quately covering distant sheets (right). Our method properly
handles both cases.

heat kernel is well known to be robust to missing data and
topological shortcuts, as demonstrated for segmentation of
surface meshes in [DGGV08]. For point clouds the approach
of [OAG10] constructs the kernel as:

k(pi,p j) = e
−(

|pi−p j|
σp

)2−(
|ni−n j|

σn
)2

(10)

Originally used for its short-time behavior, we consider its
long-time behavior in diffusion distances. We set σp to 0.02
of the bounding box diagonal, and σn to 0.5, a small band-
width which heavily penalizes normal differences [OAG10].

See Figure 9 for a comparison between distances. The
Mannequin model highlights the issues with thin sheets,
where although both methods contain false positives, our
method succesfully filters them out since the connected-
ness induced by medial balls is stronger. The Bumpy Sphere
model highlights the opposite issue: points which are out-
side of the bandwidths of σp and σn are never connected,
hence the kernel of [OAG10] retains the boundary compo-
nents. Our method identifies the presence of a medial ball
connecting the three disparate sheets. Figure 10 shows how
this type of identification results in a volumetric segmenta-
tion, whereas k-means applied to [OAG10] keeps these parts
separate.

Comparison to Killing Vector Fields: Our method
bears resemblance to the recent work on mesh segmen-
tation via killing vector fields (KVFs) [SBCBG11]. A
KVF defines an isometric self-mapping, where [SBCBG11]
show how the eigenfunctions of a suitable KVF energy
can be used to localize self-isometries for segmentation.

MK KVF

For large time scales, our
method begins to resemble
local self-isometries, as the
medial ball itself can be looked
upon as a local transformation.
Indeed, our segmentation ap-
proach of clustering (weighted) eigenvectors of a point cloud
operator mirrors [SBCBG11], and as the inset shows we
obtain nearly identical segmentations for the given model. It
would be interesting future work to extend [SBCBG11] to
the case of incomplete point clouds via our method.

MK HK

Figure 10: K-means segmentation applied to our method
(MK) and the kernel of [OAG10] (HK). Note how our seg-
mentation captures the body of the wolf, despite the large
missing data.

Surface Reconstruction: We have ran our reconstruction
algorithm on a set of challenging acquired data, containing
missing data and thin surface sheets. In these scenarios, an
explicit segmentation of these regions substantially simpli-
fies reconstruction. We show that our distances provide for a
robust means of achieving this segmentation and generating
a faithful reconstruction.

See Figure 11 for a comparison of our method with
that of Fourier surface reconstruction [Kaz05], adaptive
RBFs [OBS04], and smoothed MPU [NOS09]. One poten-
tial issue with these methods is that they employ function fit-
ting [OBS04, NOS09] or variational reconstruction [Kaz05]
independent of the structure of the point cloud. Hence for
thin sheets with missing data there are no constraints on the
surface produced. By segmenting the point cloud via the me-
dial kernel, we avoid issues related to missing data and un-
dersampling.

Our method is also robust to the number of segments used
for reconstruction. See Figure 12 for an illustration of the
hand point cloud (from Figure 1) reconstructed under dif-
ferent numbers of clusters. As shown, the reconstruction is
largely unaffected by the different number of clusters.

Discussion and Limitations: Our medial kernel relies on
sufficient evidence of a medial structure for success, so in
this absence our method will result in either isolated points
or false positives. The former case does not pose much of
a problem in the context of distances and segmentation, but
for reconstruction it may be difficult to construct an initial
set of union-of-balls. In the latter case, false positives typi-
cally occur when neighboring parts have insufficient data to
penalize candidate balls between the parts.

Our kernel construction requires oriented normals, where
although it is quite robust to normal directions (see Fig-
ure 6), it is somewhat sensitive to inverted orientation. Our
approach can tolerate a small amount of inverted orientation,
but for large and continuous regions of inverted normals we
begin to interpret exterior medial balls as being interior.

Perhaps the biggest drawback to our approach is its com-
putational complexity. To construct our measure of empti-
ness we must consider, for every pair of points, the entire
point set. Hence in the worst case the complexity is cubic in
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Figure 11: Comparison of surface reconstruction. We first show our reconstruction by way of segmentation, and then a com-
parison of our method to FFT [Kaz05], CRBF [OBS04], and SPU [NOS09]. Since our method explicitly segments parts of the
point cloud, we avoid issues related to missing data and thin surface sheets, where previous methods contain difficulties.

the number of points. However in practice, our acceleration
scheme typically provides an order of magnitude improve-
ment. Figure 13 shows computational timings as a function
of point cloud size, and as shown the kernel construction is
generally quadratic. We find that our acceleration scheme is
slowest when dealing with spherical parts of a shape, since
for these points the kernel measure is high and so we must
sum over all other points on the part to obtain an accurate

Figure 12: From the point cloud in Figure 1, we show seg-
mentations of different cluster sizes, and the reconstructions.
Note the insensitivity to the number of clusters.

measure. This is the cause of the Batter model being so time
consuming, due to the head part. However, a voting scheme
analogous to [LCDF10] should considerably speed this up.

7. Conclusions

We have presented medial kernels, a method for constructing
robust distances on point clouds containing incomplete data.
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Figure 13: Timings for kernel construction on the shapes
used in Figure 11, as a function of point cloud size.
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Our key idea is the construction of a medial representation
through diffusion distances directly on the point cloud. We
have illustrated its robustness, as well its application towards
segmentation, function bases, and reconstruction.

For future work we hope to extend the kernel construction
to large-scale, raw point clouds by utilizing a voting scheme
to efficiently compute our emptiness measure. As the con-
struction of our kernel is quite simple, we think it may be
possible to derive explicit bounds on how much missing data
our distances can tolerate. Our kernel should also prove use-
ful in other areas outside of reconstruction, where we intend
to apply the kernel to registration and deformation.
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