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Abstract—In this work we introduce a new hierar-
chical surface decomposition method for multiscale
analysis of surface meshes. In contrast to other
multiresolution methods, our approach relies on
spectral properties of the surface to build a binary
hierarchical decomposition. Namely, we utilize the
first nontrivial eigenfunction of the Laplace-Beltrami
operator to recursively decompose the surface. For
this reason we coin our surface decomposition the
Fiedler tree. Using the Fiedler tree ensures a number
of attractive properties, including: mesh-independent
decomposition, well-formed and nearly equi-areal
surface patches, and noise robustness. We show
how the evenly distributed patches can be exploited
for generating multiresolution high quality uniform
meshes. Additionally, our decomposition permits a
natural means for carrying out wavelet methods, re-
sulting in an intuitive method for producing feature-
sensitive meshes at multiple scales.

Keywords—multiscale representation; multiresolu-
tion shape analysis; surface partition

1. INTRODUCTION

Multiscale analysis has emerged as one of the most
effective mechanisms for processing large and complex
surface meshes. Broadly speaking, multiscale analysis
may be broken down into regular and irregular anal-
ysis. Regular schemes assume uniform subdivision to
construct the mesh connectivity and consequently the
hierarchy, while irregular schemes are more general,
being able to handle arbitrary connectivity during the
hierarchy construction.

Although mathematically sound and flexible enough
to be employed on models with arbitrary topology,
construction of a uniform mesh from an existing irreg-
ular surface mesh is highly nontrivial, as it requires a
mapping as-isometric-as-possible between the original
and the regular surface, in order to succesfully leverage
the uniform multiscale techniques [24], [19].

In contrast to uniform subdivision methods, irregular
analysis typically relies on mesh simplification to build
meshes of arbitrary connectivity. There are effectively
two main classes of mesh simplification: bottom-up
simplification and top-down simplification.

Bottom-up simplification directly works on the sur-
face mesh, and is typified by local operations such as
vertex removal and edge collapse [13], [9], [11]. Such

techniques naturally allow for features to be preserved,
and are particularly efficient. However, these methods
typically produce poor quality triangles in their pursuit
of preserving details, have a high dependence on the
mesh tesselation, and are sensitive to noise.

Top-down simplification methods operate in the
bounding volume of the surface, hierarchically refining
the space from coarse to fine, stopping the refinement
process when an error criterion is achieved for each
node of the tree [32], [3]. A triangulation is produced
by contracting the vertices in each node of the tree into
one representative vertex, and retaining only nonzero-
area triangles. These methods are fairly robust to noise
and rather efficient, but suffer if the alignment of the
spatial structure differs from that of the surface. This
spatial dependence can be problematic: for instance,
simplifications of varying triangle quality will result
from a surface mesh and a rigid transformation of that
surface.

Remeshing schemes [1] precisely address the issue
of triangle quality, in producing a target surface with a
given number of vertices which well approximates the
original, while satisfying some measure of mesh quality.
Unfortunately, the vast majority of remeshing schemes
involve some notion of energy minimization, so for the
purposes of multiresolution one would need to run the
particular remeshing algorithm from scratch each time,
for each target number of vertices. This also makes the
notion of scale for multiresolution rather unclear.

In the spectrum between simplification and remeshing
our approach lies somewhere in between, in that our goal
is to generate quality irregular multiresolution. This is
particularly important for applications such as multigrid
for solving PDEs, where the quality of each mesh in the
hierarchy should be acceptable.

We propose a top-down, binary, hierarchical surface
decomposition to generate well-formed surface patches
at every scale. Namely, we utilize the first nontriv-
ial eigenfunction of the Laplace-Beltrami operator to
drive the decomposition. This has a natural analogue
in the area of graph theory, a process known as spec-
tral bisection [2], where a combinatorial or weighted
Laplacian is used. The first nontrivial eigenvector used
to drive the decomposition is known as the Fiedler
vector. We adapt this notation to coin our structure the
Fiedler tree. By utilizing the Laplace-Beltrami operator
instead of the combinatorial Laplacian, we obtain many
nice properties: surface patches of uniform area, well-



Fig. 1. Overview of our Fiedler tree approach. From the original egea model on the left, we are able to generate quality uniform meshes at
different scales (top row). Due to the hierarchical nature, feature-sensitive meshes are also easily generated (bottom row)

shaped surface patches, mesh-independence, and noise
robustness, among others. Moreover, we are able to
generate high quality uniform meshes at multiple scales.
Uniform in our case refers to uniform triangle areas
and consistently good quality in the resulting triangles,
measured by the triangle radius ratio metric.

Due to the properties of our construction, we argue
that we have a well-defined notion of scale on the sur-
face. This provides for a natural means of constructing
wavelets on a surface, as scale is notoriously difficult
to define on a sampled manifold [19], [11]. As an
application, we illustrate the construction of a Haar
wavelet basis, and from this wavelet basis, a trivial
means of producing feature-sensitive meshes.

Figure 1 illustrates such flexibility, showing from left
to right three different resolutions for the model on the
left. Two different representations are presented for each
resolution level, illustrating the capability of generating
high quality uniform meshes (top) as well as adaptive
meshes capturing surface features (bottom).

Main Contributions The main contribution of our
work is a new hierarchical binary surface decomposi-
tion which generates high-quality, well-balanced surface
patches, suitable for irregular multiresolution analysis.
Specifically, our approach consists of the following
contributions:

• Quality Irregular Multiresolution: We are able to
generate a hierarchy of quality meshes, a task dif-
ficult to achieve with respect to current remeshing
and simplification schemes.

• Mesh Independence: As our decomposition, and
corresponding meshes, are completely determined
by the Laplace-Beltrami operator, our approach is
meshing-invariant.

• Noise Robustness: Utilizing the Fiedler vector, we
are able to produce quality triangulations even in
the presence of high-frequency noise.

• Multiscale Analysis: The binary hierarchy permits
a multiscale analysis very similar to a Haar wavelet
decomposition, making noise and feature identifi-
cation quite natural.

2. RELATED WORK

Our approach spans a variety of areas, ranging
from: mesh decimation, multiscale surface representa-
tion, remeshing, and spectral geometry processing. It is
beyond the scope of this paper to thoroughly cover each
area. We will instead concentrate on the most relevant
approaches in each respective field.

One of the first uses of mesh decimation for model
simplification was presented in the work by Hoppe et
al. [14], where edge-collapses and vertex-splits are used
to simplify mesh connectivity while vertex positioning
is set through a minimization procedure. Many works
have built on that seminal idea toward creating mul-
tiresolution mesh representation schemes, with progres-
sive meshes [13], multiresolution signal processing for
meshes [11], and surface simplification using quadric
error metrics [9] being good representatives of this class
of algorithms. Indeed, the quadric error driven simpli-
fication scheme proposed by Garland and Heckbert [9]
has become a reference in the context of decimation-
based multiresolution representation, mainly due to its
feature preservation, efficiency, and simplicity.

Multiresolution meshes may also be generated via
partitioning of the ambient space for which the mesh
lies in. Uniform [32] and adaptive [36], [22], [34] grids
may be employed, where simplification is performed
via collapsing vertices that belong to equivalent nodes.
These approaches have the advantage of being fairly
noise insensitive while still retaining a good computa-
tional performance. However, feature preservation and
mesh quality are issues that must be carefully addressed
with this kind of representation, as unbalanced partitions
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are prone to generate bad quality meshes and poorly
preserve features. The approach of [3], termed the VS-
tree, addresses feature preservation by switching to a
quad-tree structure at finer levels. However, building
good quality meshes still remains an issue.

Generation of good quality, feature preserving meshes
can be achieved via remeshing schemes [1]. These meth-
ods range from centroidal voronoi diagrams (CVD) [42],
[46] to more general optimization methods [41], [39].
CVD methods, in particular, build a cellular complex
which minimizes an energy functional, whose dual com-
plex ensures a high-quality triangulation, while still suf-
ficiently preserving features. These methods, however,
are rather sensitive to noise and computationally costly,
particularly for the purposes of generating a hierarchy
of quality meshes, as any algorithm would need to be
run from scratch each time for each resolution. These
two issues can be alleviated via heuristic methods [4],
albeit at the cost of good quality meshes.

Our tree construction is based on recent results in
the areas of spectral graph theory and spectral geometry
processing; we refer to [2] and [21] for comprehensive
surveys on the subjects, respectively. Spectral bisection
is well known in graph theory, and has been used for
the purposes of dynamic load balancing [45], sparse
matrix ordering [12], and partitioning finite element
meshes [18].

Spectral methods have enjoyed much popularity in
geometry processing the past decade, with applications
ranging from registration [16], [25], segmentation [23],
[6], and shape comparison [31], [38], amongst many oth-
ers. Perhaps most relevant to our approach is the recent
work in spectral surface quadrangulation [7], [15], in
that we both utilize Laplace-Beltrami eigenfunctions for
the purposes of remeshing. However, choosing a single
eigenfunction to remesh from is difficult, as the number
of critical points of a shape is highly dependent on the
complexity of its geometry and topology. Additionally,
it is nontrivial to build a nested hierarchy of meshes by
choosing a single eigenfunction. We circumvent these
issues by recursively choosing the Fiedler vector.

3. FIEDLER BINARY TREE DECOMPOSITION

The proposed framework relies on a binary hierarchi-
cal structure to carry out the multiscale decomposition.
Once the hierarchical structure is established, a CW
complex is constructed from which a triangulation can
be built. Details on how to accomplish the tree con-
struction follows in this section, while triangulation is
handled in section 4.

3.1 Tree Construction

In order to construct a binary decomposition of the
surface mesh, we require a mechanism to recursively
split the mesh in two parts. Partitioning a surface into
two surface patches amounts to finding a cut along
the surface, or equivalently, finding a series of curves

Fig. 2. Binary mesh decomposition: each patch (tree node) is
recursively split on the Fiedler nodal line.

which splits the surface into two connected components.
We utilize the nodal regions of the Laplace-Beltrami
eigenfunctions to make these splits. Namely, we use
the first nontrivial eigenfunction of the Laplace-Beltrami
operator, which in graph theory circles is commonly
referred to as the Fiedler vector, when considering the
more general Laplacian. Splitting along the zero-set of
the Fiedler vector ensures a split of the surface into
exactly two connected components from the Courant
Nodal Domain theorem [10], hence ensuring a binary
decomposition.

To this end, we employ the discrete Laplace-Beltrami
operator of [43], utilizing dual barycenter areas. In
the computation of the Fiedler vector we also use the
method of [43] in performing a spectral shift, in order to
ensure a faster convergence in eigenvector computations.

Once we have computed the Fiedler vector on the
original surface we isocontour the zero set, assuming
linear interpolation, to split the mesh in two patches.
From the two newly created surface patches, we simply
recurse this process until a user-defined level of the tree
is met. See Figure 2 for an illustration.

Note that we exactly isocontour the surface, rather
than respect the original connectivity of the surface. By
exactly cutting along the zero set, we are not inhibited
by highly irregular meshes where portions of the surface
may have large triangles, and others may have small
triangles. Therefore, we are able to keep the notion of
scale on a surface mesh independent.

For numerical robustness, we take care of instances
where the Fiedler vector contains values approximately
zero. If the value of the Fiedler vector in a vertex is very
close to zero, then the resulting submesh may contain
very poor triangles (i.e. skinny), posing numerical insta-
bility issues for the eigenvector computations. We assign
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(a) Original meshes (b) Patches in depths 4, 5, and 6

Fig. 3. Intrinsic nature of the hierarchical decomposition. Almost identical decompositions are generated from meshes with varying refinement.

these vertices a small random value, within a range that
will render the submesh numerically stable.

When splitting the mesh, every triangle along the
nodal line is split into 3 separate triangles, where two
triangles will be assigned to one of the submeshes, and
the other triangle to the other submesh. This results
in a significant amount of triangles being created at
finer scales, though we suspect that symbolically cutting
triangles similar to [46] is a viable alternative and would
save much memory.

3.2 Fiedler Tree Properties

By splitting along the Fiedler vector, we inherit
several attractive properties in our decomposition. The
Fiedler vector is known to be a good approximation
to the normalized min-cut [37] in the segmentation
literature. For the decomposition of a surface Ω into
Ω = Ω1 ∪ Ω2, we recall the cut energy as:

Ncut(Ω1,Ω2) =
cut(Ω1,Ω2)
assoc(Ω1,Ω)

+
cut(Ω1,Ω2)
assoc(Ω2,Ω)

(1)

where assoc is a measure of similarity between two
domains, and cut measures the dissimilarity in the
boundary between Ω1 and Ω2.

In contrast to segmentation approaches, our measure
of similarity is entirely uniform, in that by using the
Laplace-Beltrami operator we are only considering the
intrinsic geometry for the purposes of segmentation.
Thus, if we denote ξ = Ω1 ∩Ω2 as the nodal set, we in
fact have:

Ncut(Ω1,Ω2) =
l(ξ)

s(Ω1)
+

l(ξ)
s(Ω2)

(2)

where l represents the length of a curve, and s repre-
sents surface area. Thus in our case the Fiedler vector
approximates the minimization of the ratio of nodal
set length to surface area [40]. As a result, for every
split we are likely to obtain surface patches which
are of similar surface area, while the split itself is of
small length, and typically of small Gaussian curvature

magnitude on the boundary. We argue that both of these
properties give rise to a well-defined notion of scale in
the decomposition.

Our tree construction is also mesh-independent. That
is, for a given surface meshed in two different ways,
our construction will produce identical decompositions.
Seeing as the Laplace-Beltrami operator is isometry-
invariant, this should come as no surprise. Only at very
fine scales does the decomposition begin to differ, due
to using linear interpolation in making the cuts. Fig-
ure 3 illustrates the mesh-independent property, showing
patches in three different levels of the hierarchy. Notice
that patches are practically indentical in the top and
botton rows, even though the construction is performed
with respect to completely different meshings (the left-
most models).

Last, it has been illustrated in previous works [20],
[10] that the Fiedler vector, in some sense, follows the
“shape” of the surface. For the purposes of our con-
struction, we find that for tubular and anisotropic surface
patches, the zero set of the Fiedler vector consistently
aligns with the maximum principal curvature directions.
In other words, the cut tends to be along the minimum
axis of the surface, and as a consequence, effectively
removes the anisotropy of the surface. See Figure 4 for
an illustration.

Fig. 4. Our decomposition tends to split along the minimum axis,
and consequently along maximum principal curvatures, as illustrated
for an ellipsoid.
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4. TRIANGLE MESH GENERATION

Producing a triangulation from the tree construction
involves topological and geometric considerations. We
handle both in turn.

4.1 Topological Construction

At the end of the tree construction process, we are
left with a set of surface patches at all scales. At some
scale, each surface patch will become homeomorphic
to a topological disk. At this scale we have in fact
constructed a cell complex, or CW-complex. For the
space of a 2-manifold, a CW-complex consists of a set
of 0, 1, and 2-cells, where an n-cell is homeomorphic to
an n-ball, and the boundary of an n-cell strictly consists
of cells of dimension m < n [27]. In our context 2-cells
are the surface patches, 1-cells are arcs on the boundary
of the patches whose ends are the 0-cells, or vertices.

The significance of the CW-complex for our purposes
lies in the fact that, under certain circumstances, its
dual complex is a valid triangulation. The dual complex
of the CW-complex takes every n-cell and maps it to
a unique (2 − n)-cell, such that every 2-cell becomes
a point, every 1-cell becomes an edge, and a 0-cell
becomes a facet. Each 0-cell will map to a triangle if
and only if the number of 1-cells which intersect to form
the 0-cell is exactly 3. As our tree construction always
cuts every edge the zero set crosses, open zero sets
along the surface will always start/end at unique points,
and consequently, we are always guaranteed triangle
elements.

The only remaining issue is whether or not the dual
complex is indeed a valid triangulation. There are three
cases where zero set cuts will result in invalid triangu-
lations, which correspond with violations of the closed
ball property [8]:

• The zero set is closed.
• The zero set consists of multiple connected com-

ponents.
• The zero set starts and ends at the same 1-cell.

The first case results in a dangling edge, the second case
results in a degenerate triangle, and the third case results
in the creation of duplicate triangles. Hierarchical space
partitioning approaches [34], [3] suffer from similar
problems; however, since we are partioning the surface
directly, we may trivially detect these cases. We find
that the first two cases only occur in coarse levels of the
tree, as when we approach finer levels, the 2-cells begin
to resemble developable, convex, topological disks, for
which the zero set is known to be open and of a single
component [26]. The third case, however, may still occur
at any level, although in practice it is rare to occur at
finer levels of the tree. In all examples throughout the
paper, we have found that the closed ball property is
first satisfied at a rather coarse level, and is consistently
satisfied at all finer levels.

Care must be taken in the implementation of this
hierarchical CW-complex for the purposes of memory

efficiency. To this end we only store the triangles of the
finest-scale CW-complex, that is, we label the triangles
in the finest level in accordance with patches in that
level. Moreover, ids are assigned such that the mul-
tiresolution structure is maintained. In other words, if
a triangle has a label k in the finest level then it will be
labeled in its father node as bk

2 c, ensuring a consistent
hierarchical labeling scheme. Therefore, a patch with id
k at level j is labeled as 2k or 2k + 1 at level j + 1
(the same being valid for the triangles representing these
patches). Hence we are always able to process the CW-
complex at any scale, strictly from the finest scale.

We next illustrate two mechanisms for generating
meshes: multiresolution uniform meshes, and quadric
error meshes.

1) Multiresolution Uniform Meshing: Generation of
a uniform mesh amounts to reconstruction at a particular
depth (i.e. scale) in the tree. Namely, for a prescribed
resolution j, we identify the patches corresponding to
depth j using the scheme as described above. This
effectively corresponds to the CW-complex at scale j.
From here, we identify the 0-cells to be the triangles
in the dual triangulation, where a dual triangle’s ver-
tices are determined by the intersecting three 2-cells.
This construction guarantees an oriented simplicial com-
plex decomposition of the surface. Spatial partioning
approaches [32], [34], on the other hand, encounter
difficulty in ensuring a decomposition that guarantees a
well defined simplicial complex as output, as issues may
occur in clustering points which are close in Euclidean
distance yet far apart in geodesic distance.

2) Quadric Error Meshing: Similar to previous ap-
proaches [34], [3], we may utilize our spatial decompo-
sition for the purposes of applying quadric error-based
decimation [9]. The primary difference here is that we
have well-defined surface patches, both in terms of shape

Fig. 5. QSlim decimation (top), compared to our quadric error
meshing approach (bottom). Eigenvector computation time: 14s. Qslim
timing for 4K and 1K vertex decimation, respectively: 44ms and 54ms.
Our timing for 4K and 1K vertex decimation, respectively: 31ms and
57ms.
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Fig. 6. The CW-complex and corresponding triangulations, for dif-
ferent scales. Note the consistency in the quality of the decomposition,
as we go to finer scales.

and uniform area across all scales, whereas spatial par-
titioning approaches greatly suffer from nonuniformity
as a result of axis-aligned spatial decompositions.

We prioritize nodes of the tree starting from the finest
level, where the priority is the quadric error metric.
When two neighboring nodes have both been removed,
we may add their parent to the queue for processing.
When adding parent nodes to the queue, we may simply
add their child quadric error functions together; however
note that since we have a binary tree structure, it
is relatively inexpensive to compute the quadric error
function from scratch. In fact it is O(|V |log|V |) in
the number of vertices |V |, whereas [9] rely on edge
collapses, and consequently it would be quadratic in
their approach.

Once we have selected the subset of nodes to be
retained, we need to generate the dual triangulation.
We associate each 2-cell with its scale and id, and
then generate a unique id for each (scale, id) pairing.
This gives us a consistent CW-complex representative
of the quadric error decimation. Generation of the dual
triangulation then proceeds in exactly the same manner
as above.

See Figure 5 for a comparison between our approach
and qslim. Note that the results are quite similar; how-
ever, the order of complexity of our approach is |V |

2 ,
where |V | is the number of vertices, whereas qslim
works off of edge collapses, hence the complexity for a
typical mesh with qslim is of the order 3|V |, which is
roughly the number of edges.

4.2 Geometric Embedding

In computing a representative vertex for every 2-cell,
its center of mass is a logical choice. That is, for every

2-cell, we may take the area-weighted coordinate as the
vertex position.

A disadvantage to using the center of mass is that we
may miss features on the surface. If feature preservation
is desired, we may position vertices according to the
quadric error metric, taken with respect to the 2-cell. By
doing so, however, our mesh quality suffers. To satisfy
both ends, we opt to interpolate between the center of
mass and the quadric error vertex, by a user-defined
parameter α. This way, the user may choose between
high-quality triangulations and feature preservation.

4.3 Triangulation Properties

If we are to use the center of mass for vertex po-
sitions, then our construction is able to produce high-
quality triangulations. This is a consequence of the tree
construction properties discussed in section 3.2. The
fact that the nodal curves tend to follow the maximum
principal curvature directions results in edges in the dual
triangulation following the minimum principal curva-
ture directions. This also accounts for the “quad-like”
structure in our meshes, and consequently our triangles
are slightly anistropic in the principal directions of the
curvature tensor. As well, the property of surface patches
being of almost uniform area for each level results
in triangles containing very similar areas in the dual
triangulation. See Figure 6 for an example illustrating
these properties across several scales.

Simultaneously satisfying small-length nodal curves
and equi-areal surface patches is rather difficult, and
occasionally the Fiedler vector will favor one over the
other. In the former case, this will result in nonuniform
surface areas, and hence the dual triangulation will have
triangles of varying areas. In most cases, however, we
have noticed this to be desirable; for instance, the legs
of the horse in Figure 6 should be meshed denser than
the stomach. In the latter case, nodal curves may result
in surface patches being non-convex, in which case

Fig. 7. Mesh generation for the eight model from two different
meshings of the same surface.
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Fig. 8. Multiscale representation of half-noise Julius model (left most). Our approach (bottom row) can robustly smooth noise out while still
producing good quality meshes in every level of the hierarchy. The noise remains prevalent when QEM is used as a simplification mechanism,
thus preventing the generation of good meshes. Histograms on the bottom right of each model show the triangle radius ratio quality for each
model.

skinny triangles and high-valence vertices are produced.
In practice we have observed that this rarely occurs.

The property of mesh independent tree constructions
in fact translates to near identical triangulations. See
Figure 7 for an example. Note that there are subtle
differences in the meshes, as neighboring 2-cells may
differ, corresponding to a difference of an edge flip in
the triangulations.

Last, we note that our meshes are very robust to geo-
metric noise. As pointed out in previous work [33], the
low-frequency eigenfunctions of the Laplace-Beltrami
operator are robust to even topological noise, in addition
to geometric noise. The Fiedler vector being the lowest
frequency nontrivial eigenfunction, it is most robust.
This is a property inherited throughout our hierarchy,
as Figure 8 illustrates. The noise in this example is
generated by perturbing the per-vertex normals, and
displacing the vertices a small amount along this pertur-
bation. We are additionally able to produce high-quality
triangles in the presence of noise, as our triangle radius
ratio histograms demonstrate.

5. FIEDLER MULTISCALE ANALYSIS

Multiscale analysis usually relies on recursively de-
composing a given signal into low-frequency and high-
frequency components. Although different approaches
can be used to compute low and high-frequency com-
ponents of a signal in each resolution, such as expan-
sion in a set of basis functions or prediction/updating

schemes [17], all multiscale methods demand a splitting
mechanism (also called up-sampling) in order to identify
the subset of data that will be “shifted” to the next
coarser level. Efficient splitting schemes are particularly
difficult to be defined on unstructured data, as a biased
choice might introduce artifacts in the multiscale decom-
position. Our hierarchical scheme, however, provides for
an intuitive notion of scale, and hence is an attractive
starting point for many multiresolution methods. We
illustrate such functionality by implementing a Haar-
like multiscale analysis using our decomposition as a
splitting mechanism.

Let γj
k be a surface patch with index k at scale j of

the tree. Denoting by γj+1
2k and γj+1

2k+1 the children nodes
of γj

k, we can compute scaling and detail coefficients
cj
k, dj

k in γj
k by simple averaging and differencing from

scaling coefficients cj+1
2k and cj+1

2k+1 in γj+1
2k and γj+1

2k+1.
More specifically, scaling and detail coefficients in level
j can be computed as [17]:

cj
k =

|γj+1
2k |
|γj

k|
cj+1
2k +

|γj+1
2k+1|
|γj

k|
cj+1
2k+1 (3)

dj
k = cj+1

2k − cj+1
2k+1 (4)

where |γj
k| is the area of the surface patch k at scale

j. At the finest scale J , we take the cJ
k to be the area-

weighted average of the function values on that surface
patch (assuming the function is constant in each patch
of the finest level). Similarly, an inverse transform may
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Fig. 9. Illustration of the multi-scale decomposition of the normals. From right to left, we are adding more details to the model, until we get
the original surface back.

be applied as follows:

cj+1
2k = cj

k +
|γj+1

2k+1|
|γj

k|
dj

k (5)

cj+1
2k+1 = cj

k −
|γj+1

2k |
|γj

k|
dj

k (6)

The capability of computing scaling and detail co-
efficients complements the binary hierarchical decom-
position with a natural mechanism to detect features
and surface details. In fact, we may utilize the Haar
wavelet decomposition for the purposes of detecting
multi-scale features in the mesh. To this end, we analyze
the variation in per-vertex normals. If we denote the
components of normal vectors as functions nx, ny , nz

over the surface, we may run our Haar decomposition,
as described in equation (4) to obtain wavelet (detail)
coefficients dx, dy, and dz for each coordinate function,
respectively. By setting dj

k = (dxj
k, dyj

k, dzj
k) as a vector

in every node k at scale j, we can take ‖ dj
k ‖

as a feature measure at node k (and level j) of the
tree. An example of such a Haar-like decomposition
can be seen in Figure 9, where the warmer colors
in the bottom models represent high values of detail
coefficients. Notice that by going from right to left, more
details are added in the model, characterizing the typical
behavior of a multiscale scheme.

Scaling and detail coefficients may also be exploited
for the purposes of feature detection and vertex posi-
tioning during the multiresolution process. In fact, we
have exploited the Haar-like multiscale analysis for:
Feature-sensitive Meshing: The feature measure de-
scribed above may be easily leveraged to produce adap-

tive meshes; that is, meshes where the sampling density
is a function of the features of the mesh. This is achieved
by culling nodes (i.e. 2-cells) from the tree in a greedy
manner prioritized by ‖ dj

k ‖.
Similar to the quadric error meshing, we first place

all leaf nodes in the tree in a priority queue. A tree
node is added to the queue only if its children have
been removed. Additionally, in order to maintain nice
triangulations and prevent high valence vertices, we do
not allow the merging of two nodes nj+1

2k , nj+1
2k+1 into nj

k

if a child of the neighbor node of nj
k still exists. Once all

nodes have been removed, the triangulation is generated
in the exact same manner as section 4.12. This adaptive
mechanism was used to generate the bottom models in
Figure 1.

Multiresolution Embedding: In section 4.2 we demon-
strated a means of computing the center of mass over
every surface patch. This is unfortunately of complexity
O(|V |log|V |) to compute. However, we may make the
computation linear by noting that the projection of the
coordinate functions onto the Haar basis exactly corre-
sponds to the center of masses at different scales. That
is, the scaling coefficients of the coordinate functions
at a particular scale correspond to the center of masses
computed at that scale. Only the finest scale integration
needs to be computed.

6. EXPERIMENTAL RESULTS

In this section we present the results of applying the
described methodology for the purposes of generating
multiresolution uniform meshes and feature-sensitive
meshes. All the models presented in the following
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Fig. 10. Uniform and adaptive meshing results for a variety of surface meshes.

applications were generated on a MacBook with a dual-
core processor of 2 GHz and 2 GB of memory.

While minimum angle in a triangle is a common
quality measure in the remeshing literature, we find
that our meshes are slightly anisotropic in the curvature
tensor; see section 4.3 for a discussion on this matter.
Hence minimum angle is not a fair measure of quality
for our meshes. For this reason, we measure mesh
quality by the incircle to circumcircle ratio, commonly
referred to as the radius ratio.

Figure 10 demonstrates our results for a variety of
surface meshes, uniform and adaptive meshing alike.
The rocker arm mesh demonstrates our method’s ro-
bustness to meshes with highly irregular geometry and
connectivity, where discrete variational methods face
problems [42].

Figure 11 shows our multiresolution scheme applied
to the fertility model, decimated to 16K and 8K vertices
from 240K vertices. Note the drastic improvement in
mesh quality (top part), and our method’s resilience
to the input triangulation. The mesh independence of
our construction ensures a high-quality triangulation,

regardless of how the input surface is meshed.
Table 1 shows quality statistics for these meshes. We

note that for the uniform meshes, and the other uni-
form meshing results shown throughout, we obtain very
consistent triangle radius ratio histograms, independent

Fig. 11. Fertility model, 240K vertices, uniformly decimated to 16K
vertices, 8K vertices. Our Fiedler approach is shown in the top-half
image.
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TABLE 1
MESH QUALITY OF MULTIRESOLUTION MODELS PRESENTED IN

FIGURE 10. NUMBERS IN EACH ENTRY CORRESPOND TO AVERAGE
QUALITY, WORST CASE, AND PERCENTAGE OF TRIANGLES WITHIN
THE INTERVAL [0.5, 1.0], WHICH COMPRISES THE GOOD QUALITY

TRIANGLES.

Rocker Un 8K Ad 4K Un 2K Ad 1K
Av Wt [%] 0.84 0.06 99.0% 0.82 0.02 98% 0.84 0.15 99.3% 0.80 0.18 94.4%

Hand Un 32K Ad 16K Un 8K Ad 4K
Av Wt [%] 0.82 0.13 99.7% 0.82 0.15 98.8% 0.83 0.25 99.8% 0.81 0.01 96.2%

Bimba Un 64K Ad 32K Un 16K Ad 8K
Av Wt [%] 0.83 0.02 99.5% 0.83 0.01 98.5% 0.83 0.16 99.7% 0.80 0.05 95.2%

Dragon Un 64K Ad 32K Un 16K Ad 8K
Av Wt [%] 0.83 0.01 99.7% 0.83 0.01 98.5% 0.84 0.15 99.7% 0.81 0.04 95.3%

Fertility Un 16K Ad 8K Un 4K Ad 2K
Av Wt [%] 0.82 0.10 99.8% 0.82 0.10 98.2% 0.83 0.17 99.6% 0.80 0.11 95.1%

of the particular mesh, in a similar manner to [35].
Indeed, the vast majority of the triangles produced with
our method tend to have 90 ◦ angles, and consequently
we produce many triangles with angles approximately
< 30 ◦, 60 ◦, 90 ◦ >, due to the slight anistropy of our
method. This is reflected by the peaks in the histograms.
It is worth pointing out that for uniform meshing, our
approach resulted in more than 99% of good quality
triangles, where the notion of a good quality triangle is
such that its radius ratio is greater than 0.5 [35]. This
reinforces our method’s capability to generate quality
multiresolution meshes.

TABLE 2
COMPUTATIONAL TIMES TO COMPUTE THE FIEDLER VECTOR

DURING THE TREE CONSTRUCTION.

Model Rocker Hand Bimba Dragon Fertility

Size 10K vert. 53K vert. 90K vert. 152K vert. 240K vert.

# Levels 13 15 16 16 14

Eigen Calc. 8s 49s 1m40s 2m48s 4m44s

Table 2 shows the computational time involved in
the Fiedler vector computation. Times refer to the total
time, that is, the 8 seconds shown in the column of the
rocker arm model is the time to carry out the eigen
decomposion in the 213 − 1 = 8, 191 nodes (the Fiedler
vector is not computed in the tree leaves).

Figure 8 demonstrates qslim’s inherent limitation in
mistaking noise as features. Space decomposition-based
methods tend to be more robust to noise, so we have
compared our approach to that of the VS-tree [3] in
Figure 12. Although the VS-tree has the capability to

construct a decomposition on the surface at a fine-
enough level, utilizing a height field indicator in the
presence of high-frequency noise results in unreliable
analysis. The Fiedler tree, however, remains invariant
to this high-frequency noise, sufficiently smoothing the
mesh. We note that the VS-tree and qslim have the ad-
vantage of being computationally efficient, whereas our
method is significantly more time consuming. However,
our comparisons illustrate flaws in these approaches,
resulting from the lack of a proper analysis of the surface
at multiple scales, which is precisely what our method
excels at.

Fig. 12. Comparison of VS-tree [3] (left) to our approach (right), for
simplification of a noisy surface. The original surface (135K vertices)
is decimated to 21K vertices for both approaches. Timing for VS-tree:
70ms, timing for our method: 2m30s for eigenvector computations,
and 900ms to generate the mesh

Last, we have compared the quality of our meshes to
that of a state of the art remeshing algorithm, delpsc [5].
See Figure 13 for a comparison of the egea model,
remeshed to approximately 4K vertices. Our results are
competitive in terms of triangle radius ratio, albeit not
quite as good; however we are able to construct a
multiresolution hierarchy of quality meshes, whereas
delpsc operates with respect to a target number of
vertices.

7. DISCUSSION AND LIMITATIONS

Examples and comparisons presented in Sections 3–
6 support that our multiresolution scheme gathers a
set of properties not present in any other approach
devoted to represent meshes in multiresolution. Table 3
exemplifies this fact, in comparing our approach to the
various methodologies. As can be observed (the symbol
X means a property is present), only the Fiedler tree
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Fig. 13. Comparison of delpsc [5] on the left, to our method on the
right, with corresponding triangle radius ratio histograms. Timing for
delpsc: 7.4s, timing for our method: 7.5s for eigenvector computations,
and 109ms to generate the mesh

endows the intrinsic properties of mesh independence,
noise robustness, mesh quality, feature detection, and
multiresolution. The symbol • indicates a property is
not intrinsic, but can be somehow approximated through
tuned implementation.

TABLE 3
COMPARISON OF OUR APPROACH TO OTHER METHODOLOGIES.
THE SYMBOL XMEANS THE PROPERTY IS PRESENT WHILE THE

SYMBOL •INDICATES THE PROPERTY CAN BE SOMEHOW
INCORPORATED.

Method / Mesh Noise Mesh Feature Multi- Comput.
Property Independence Robustness Quality Detection resolution Efficiency

Decimation
X X •Methods

Space/Tree • • X XPartition
Fiedler

X X X X XDecomposition
Remeshing

X XMethods

Table 3 also suggests that the proposed Fiedler tree
represents a methodology that stands between hierar-
chical space decomposition and remeshing approaches.
Our approach shares the conceptual simplicity of space
decomposition techniques, as we are merely performing
a top-down hierarchical partitioning of the surface, in-
stead of the volume in which the surface resides. We
are able to produce meshes which are of competitive
quality to that of remeshing schemes, yet at the same
time, our approach is much simpler in comparison to
most remeshing schemes.

Another interesting aspect of our approach is the
ability to analyze features at multiple scales. The in-
trinsic hierarchical structure provided by the Fiedler
tree makes multiscale analysis quite natural. In fact,
the Haar-like implementation described in section 5 is
only the simplest mechanism in carrying out multiscale
feature analysis. We believe that more sophisticated
and accurate schemes can be derived on top of our
decomposition.

Our binary hierarchical mesh decomposition is only
one way of decomposing a mesh, and many hierarchical
segmentation methods, including spectral methods, exist
in the literature [23], [6], [30], [29]. However, recall
that the advantage of utilizing the Fiedler vector is in
generating patches which have small boundary length,
and consistent surface areas. As segmentation methods
assume some notion of part saliency, they are unlikely
to satisfy these properties, especially in the absence
of saliency, which is common at finer depths in the
decomposition. We note that a possible extension to
our decomposition is choosing a different eigenfunc-
tion which still splits the mesh into two connected
components, while satisfying other properties such as
reflectional symmetries [28], [44]. This could lead to a
method for intrinsically symmetric remeshing, and we
leave this for future work.

The main limitation of our approach is the computa-
tional burden, including processing time and memory
consumption. Althouth Table 2 shows our technique
could be applied to process fairly big meshes on a
conventional laptop, massive meshes would demand out-
of-core eigenvector computation methods, especially in
the first levels of the hierarchy, increasing computational
times considerably. Moreover, by cutting exactly along
the surface, we are encumbered by an increasing number
of triangles being produced at every scale. This hinders
the performance and memory efficiency of our method.

8. CONCLUSION AND FUTURE WORK

We have presented a new method for multiresolution
analysis by utilizing spectral surface methods for a mul-
tiresolution construction. We have demonstrated appli-
cations to quality uniform and adaptive mesh generation,
and the inherent robustness to noise.

For future work, we intend to improve on the effi-
ciency of the construction. More sophisticated methods
for cutting the mesh would lead to more efficient,
robust means of constructing the domains. Additionally,
we feel that the decompositions produced may provide
an effective initialization for Voronoi-based methods to
start from, leading to higher quality meshes.
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