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Abstract
Learning a kernel matrix from relative comparison human
feedback is an important problem with applications in collab-
orative filtering, object retrieval, and search. For learning a
kernel over a large number of objects, existing methods face
significant scalability issues inhibiting the application of these
methods to settings where a kernel is learned in an online and
timely fashion. In this paper we propose a novel framework
called Efficient online Relative comparison Kernel LEarning
(ERKLE), for efficiently learning the similarity of a large set
of objects in an online manner. We learn a kernel from rela-
tive comparisons via stochastic gradient descent, one query
response at a time, by taking advantage of the sparse and
low-rank properties of the gradient to efficiently restrict the
kernel to lie in the space of positive semidefinite matrices.
In addition, we derive a passive-aggressive online update
for minimally satisfying new relative comparisons as to not
disrupt the influence of previously obtained comparisons. Ex-
perimentally, we demonstrate a considerable improvement
in speed while obtaining improved or comparable accuracy
compared to current methods in the online learning setting.
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1 Introduction
Learning a similarity model over a set of objects from human
feedback is important to many applications in collaborative
filtering, document and multimedia retrieval, and visualiza-
tion. It has been shown that by incorporating human feedback,
the overall performance of such applications can be greatly
improved [11, 13, 15, 31]. In this work we focus on learn-
ing a similarity model from human feedback through relative
comparisons. More specifically, we focus on the relative
comparison kernel learning (RCKL) problem, in which the
goal is to learn a positive semidefinite (PSD) kernel matrix
from relative comparisons given by humans. Kernels are
used for modeling object relationships in many learning tech-
niques [23], and hence are applicable to many methods that
utilize kernels for these applications.
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In learning a kernel from human supervision, it is
important to obtain feedback which is intuitive for the user
to provide and informative for a learning algorithm to use.
For instance, naive forms of supervision such as numerical
judgments between pairs of objects have been shown to be
very noisy [24]. A relative comparison, the response to a
query of the form “Is object A more similar to object B or C?”,
is well known as an intuitive mechanism for soliciting human
feedback and an effective way of learning similarity [12].
Recent works addressing fine-grained categorization [28] and
perceptual visualization design [6] have shown the practicality
and benefit of learning kernels from relative comparisons.

Many RCKL methods [1, 27] learn a kernel by solving
a semidefinite program (SDP) in batch – from all available
comparisons. However, in numerous practical applications,
a batch approach is not appropriate due to the online and
dynamic nature of the application. For example, in crowd-
sourcing it is often of interest to minimize the number of
dispatched tasks, and thus the cost of the crowd, by leverag-
ing active learning techniques [25, 10] to adaptively select the
most informative relative comparison query. The success of
these techniques depends on maintaining an up to date model
so as to ensure the most informative query is selected, as well
as an efficient learning method to quickly update the model so
that no crowd participant is idle. Likewise, recommendation
systems for online marketplaces obtain continuous feedback
in the form of click-through data via user interaction. In order
for the learned kernel to be up to date and reflect the latest
user feedback, the learning method must be able to quickly
incorporate feedback as it is received.

These scenarios motivate the need for an efficient and on-
line method for learning from large-scale relative comparison
data. Batch methods poorly scale for large object collections
primarily because they must ensure their solutions are PSD.
Without any prior assumptions on the data this operation is
of O(n3) time complexity for n objects, which for large n is
prohibitively slow for the aforementioned applications.

This work introduces a novel online RCKL framework
called Efficient online Relative comparison Kernel LEarning
(ERKLE) that achieves efficiency through the unique structure
of RCKL gradients. First, ERKLE sequentially updates a
kernel one query response at a time in O(n2) complexity
by employing a stochastic gradient descent technique that
takes advantage of the sparse and low-rank structure of the
RCKL gradient over a single comparison for efficient PSD



projections. We show that the gradient structure not only
enables an efficient update that requires finding only the
smallest eigenvalue and eigenvector, but generalizes several
well-known convex RCKL methods [1, 27]. Second, the
structure of the gradient also reveals a simple way to bound
the smallest eigenvalue after each gradient step, allowing
certain updates to be performed in constant time. Third,
motivated by previous work in online learning [5], we also
derive a passive-aggressive version of ERKLE to ensure
learned kernels model the most recently obtained relative
comparisons without over-fitting. The passive-aggressive
scheme in conjunction with the smallest eigenvalue bound
allows us to skip many PSD projections, yielding a very
efficient yet effective kernel learning method.

Experimentally, we show that ERKLE is able to effi-
ciently produce high-quality kernels in an online setting under
different scenarios: learning from a small number of relative
comparisons, noisy comparisons, as well as low dimensional
data distributions. We show that on synthetic and real-world
datasets we obtain both improved performance and faster run
times compared to batch RCKL methods. In summary, we
believe our method now makes it practical to learn kernels
from human-provided comparisons over large-scale datasets.

2 Related Work
The problem of learning a kernel matrix, driven by relative
comparison feedback, has been the focus of much recent
work. Most recent techniques primarily differ by the choice
of loss function. For instance, Generalized Non-metric
Multidimensional Scaling [1] employs hinge loss, Crowd
Kernel Learning [25] uses a probabilistic, scale-invariant loss,
and Stochastic Triplet Embedding [27] uses a logistic loss.

The aforementioned RCKL methods can be viewed as
solving a kernelized special case of the classic non-metric
multidimensional scaling problem [14], where the goal is to
find an embedding of objects in Rd such that they satisfy
given Euclidean distance constraints. In contrast to many of
the kernel-learning formulations, their analogous embedding-
learning counterparts are non-convex optimization problems,
which only guarantee convergence to a local minimum. In the
typical non-convex batch setting, multiple solutions are found
with different initializations and the best is chosen among
them. This strategy is poorly suited for the online setting
where triplets are being observed sequentially, and which
solution is best may change as feedback is received.

In this work we consider the online RCKL problem,
where one is sequentially acquiring relative comparisons
among a large collection of objects. Stochastic gradient
descent techniques [21] are a popular class of methods for a
very general class of functions [3] that can be applied to online
learning. Recent stochastic, online techniques [30, 22] have
demonstrated competitive performance with batch techniques.
In addition, efficient methods have been developed to solve

SDPs in an online fashion [8, 16]. The work of [4] shows how
to devise efficient update schemes for solving SDPs when the
gradient of the objective function is low-rank. We build upon
and improve the efficiency of this work, by taking advantage
of the sparse and low-rank structure of the gradient common
in convex RCKL formulations.

Our passive-aggressive step size procedure is informed
by [5] for other learning problems. In their work, the authors
create a passive-aggressive online update rule for classic
SVM formulations used in problems such as binary/multi-
class classification and regression. In deriving such an update
for different RCKL loss functions, we relate how different
methods can be utilized under a common passive-aggressive
framework. To our knowledge, such an update for RCKL
problems and the associated analysis has not been done.

3 Preliminaries
In this section, we formally define RCKL and provide a brief
overview of RCKL methods. Let Sn+ be the set of n × n
PSD matrices, and Mab be the entry at row a column b of a
matrix M. The goal of RCKL is to learn a PSD kernel matrix
K ∈ Sn+ over n objects, given a set T of triplets:

(3.1) T = {(a, b, c) | a is more similar to b than c}

such that squared distance constraints are satisfied:

(3.2)
∀(a,b,c)∈T : d2K(a, b) < d2K(a, c)

where d2K(a, b) = Kaa + Kbb − 2Kab.

We say a kernel K satisfies a triplet ti = (ai, bi, ci) ∈ T if
the constraint in (3.2) corresponding to ti is satisfied.

In this work, we consider triplets that are answers to
relative comparison queries posed to one or more people.
We define a query q to have three components, a “head”
object h to be compared with two objects o1 and o2. A
query q =

(
h,
{
o1, o2

})
can be answered by either the triplet(

h, o1, o2
)

or
(
h, o2, o1

)
. In order to model a complete notion

of the desired human similarity space, a learned kernel should
not only satisfy triplets that were obtained (observed), but
also be general enough to satisfy unobtained (unobserved)
triplets that reflect true relationships among objects.

3.1 RCKL Formulation Many RCKL methods can be
generalized by the following SDP:

(3.3)
min
K

L (K, T ) + τTrace(K)

s.t. K � 0.

The objective function is composed of two terms. The first
term is a function L measuring how much loss K incurs
for not satisfying triplets in T . The second term is a trace
regularization on K. Trace regularization is used as a convex
approximation of the non-convex rank function. Higher



values of τ enforce that (3.3) produces lower-complexity
similarity models. Finally, K is constrained to be PSD.

The loss function in the objective can be decomposed
into the sum of losses over individual triplets:

(3.4) L (K, T ) =
∑
t∈T

l (K, t) .

Existing RCKL methods differ in the choice of the loss
function l. The Stochastic Triplet Embedding (STE) approach
of [27] defines l (K, t) = − log pKt as the loss function,
where pKt is the probability that a triplet is satisfied:

(3.5) pKt=(a,b,c) =
exp(−d2K(a, b))

exp(−d2K(a, b)) + exp(−d2K(a, c))
.

Generalized Nonmetric Multidimensional Scaling (GNMDS)
[1] uses a hinge loss, where l (K, t = (a, b, c)) is defined as:

(3.6) max(0, d2K(a, b)− d2K(a, c) + 1).

For either loss function l, (3.3) is a convex optimization
problem and the globally optimal solution is found by
performing projected gradient descent, which consists of two
update steps. The first step is a simple descending step along
the gradient of the objective:

(3.7) K′i = Ki−1 − δi (∇L (Ki−1, T ) + τI) ,

where i denotes the current iteration, δi is the learning rate.
The second step projects the result of the first gradient step
onto the PSD cone:

(3.8) Ki = ΠS+
(K′i) .

These steps are iterated until convergence.

4 Efficient Online Relative Comparison Kernel
Learning (ERKLE)

The main computational bottleneck of traditional RCKL meth-
ods is the projection onto the PSD cone, ΠS+

. This projection
is commonly found by first taking the eigendecomposition of
K′i = VΛVT and setting all negative eigenvalues to 0, i.e.
Ki = V[Λ]+Vt, where [·]+ is defined on diagonal entries
of a matrix as [Λii]+ = max(0,Λii). Absent of any prior
knowledge on the structure of K′i, its full eigendecomposi-
tion is necessary for the projection. Since this is an O(n3)
operation, the projection step renders batch methods com-
putationally prohibitive for learning the similarity of a large
number of objects in an online manner.

4.1 Stochastic Gradient Step To create an efficient and
online framework for RCKL – ERKLE – we first leverage the
form of common RCKL loss functions to produce a stochastic
update with respect to a single triplet. As shown in (3.4),

the loss function L naturally decomposes into the sum over
losses l defined on individual observations (triplets in our
case). From this decomposition, ERKLE first performs the
following stochastic gradient step:

(4.9) K′j ← Kj−1 − δj∇l (Kj−1, tj) ,

where triplets t1, ..., tj−1 have been observed, Kj−1 is the
online solution after observing the j − 1 triplet,

Performing a stochastic optimization gives ERKLE an
advantage over current RCKL methods that perform batch
optimizations. Batch methods attempt to minimize a loss
function over a training set. Doing so minimizes empirical
risk with respect to particular training samples. Classically,
this is used to estimate the expected risk of the ground truth
distribution over all samples. Obtaining triplets in an online
fashion from a source can be viewed as directly sampling
triplets from the ground truth distribution at random. As
such, taking stochastic steps over samples directly minimizes
expected risk with respect to the ground truth distribution of
triplets. Because of this characteristic, stochastic methods
tend to generalize better to unobserved samples. See [3] for
more details on stochastic methods and their properties.

Note that our online formulation does not include trace
regularization. Although this may impact our method
in generalizing to unseen triplets, our online formulation
achieves good generalization through carefully constructed,
data-dependent step sizes δj , as detailed in Section 4.3.

4.2 Efficient Projection In order to retain positive semi-
definiteness, after taking a stochastic gradient step the
resulting matrix K′j must be projected onto the PSD cone.
Following the procedure of ΠS+

is prohibitively expensive
for our online setting. Instead, for RCKL methods we can
take advantage of the sparse and low-rank nature of the
gradient to devise an efficient projection scheme. To this end,
we introduce a canonical gradient matrix G over a triplet
t = (a, b, c)), where the entries are defined as:

(4.10) Gij =



−2 if i = a, j = b or i = b, j = a

2 if i = a, j = c or i = c, j = a

1 if i = b, j = b

−1 if i = c, j = c

0 otherwise.

Now consider the following choice for the stochastic step:

(4.11) ∇l (K, t) = f (K, t) G,

where f is a real-valued function. With (4.11) as the gradient
in (4.9), Kj−1 is updated by increasing entries corresponding
to the similarity between objects a and b and decreasing the
similarity between a and c by a factor of f(Kj−1, tj).



The function f can be defined such that we recover the
gradients of l for different convex RCKL formulations. The
stochastic gradient for STE can be obtained by defining f as:

(4.12) f (K, t) = 1− pKt
Similarly, by defining f to be:

(4.13) f (K, t) =

{
1 if d2K(a, b) + 1 < d2K(a, c)
0 otherwise

the stochastic gradient for GNMDS is obtained. Note, that
this not only generalizes these two methods for use in our
online framework but also suggests a simple way to create
new online RCKL methods by designing a function f that
weighs the contribution of individual triplets.

Decomposing the online updates in such a way reveals a
key insight into how to perform efficient projections onto the
PSD cone after the stochastic step. Algorithm 1 outlines the
procedure for efficient projection in ERKLE. Here, λ↓ and
v↓ are the smallest eigenvalue and eigenvector of matrix K.
This procedure has a time complexity O(n2) due to finding
λ↓ and v↓. To show that Algorithm 1 does indeed perform
the correct projection, we prove the following theorem:

THEOREM 4.1. Algorithm 1 results in a PSD matrix Kj that
is closest to K′j in terms of Frobenius distance.

Proof. Let K0 ∈ Sn+ (i.e. identity). We use this as our
base case and show inductively that after each iteration of
the main loop, Kj remains PSD. Let γj = δjf (Kj−1, tj)
be the magnitude of an update. By (4.11), the update in
Equation (4.9) can be written as Kj−1 − γjG. The only
nonzero eigenvalues of −γjG are λ1 = 3γj and λ2 =
−3γj . It follows from Weyl’s inequality that the matrix
K′j = Kj−1 − γjG has at most one negative eigenvalue.
If K′j has no negative eigenvalues, then it is PSD (line 6 of
Algorithm (1)). If K′j has one negative eigenvalue, line 4 of
Algorithm 1 results in a PSD matrix Kj that is closest to K′j
in terms of Frobenius distance by Case 2 of Theorem 4 in [4].

The important implication of Thm. 4.1 is that ERKLE
can incorporate a triplet into a kernel in O(n2) time by
performing the efficient projection outlined in Algorithm 1.
Furthermore, if a step is sufficiently small, then no projection
is needed at all. Let λ0j be the smallest eigenvalue of Kj .
By Weyl’s inequality, if λ0j − 3γj ≥ 0, then all eigenvalues
of K′j+1 are greater than or equal to 0. This can be used to
skip the projection step when the update is known to result
in a PSD matrix. In our algorithm, we lower bound the
smallest eigenvalue by maintaining a conservative estimate
λ̂0j . Initially, λ̂00 ← λ00. It is updated each iteration with it’s
lower bound λ̂0j ← λ̂0j−1 − 3γj . If λ̂0j < 0, then Alg. 1 is
used to project onto the PSD cone and λ̂0j ← max (0, λ↓).
Otherwise, no projection is performed. In the case where
λ00 >> −3γj , this simple lower-bounding procedure can
save many eigenvalue/eigenvector computations.

Algorithm 1 Efficient PSD Projection
1: procedure Π1

+(K)
2: Find λ↓ and v↓ from K
3: if λ↓ < 0 then
4: return K− λ↓v↓vT↓
5: else
6: return K
7: end if
8: end procedure

4.3 Passive-Aggressive Updates A key difference be-
tween the batch and stochastic RCKL updates is the mag-
nitude of the updates. For both methods the magnitude of
the updates with respect to a single triplet t is a function of a
learning rate and how well the previous solution satisfies t. In
the previous section we denoted the magnitude of an ERKLE
update as γj . In the batch setting, the same learning rate δi
is used for all triplets in a given step. In contrast, traditional
stochastic methods use different learning rates δj over data
samples to accelerate convergence, where the δj are designed
to satisfy certain conditions. Early work [3] on the topic of
learning rates suggest that δj should satisfy two constraints:∑∞
j=1 δ

2
j < ∞ and

∑∞
j=1 δj = ∞. For example δj = 1/j

satisfies these constraints. Later work [18] suggests a more
aggressive setting of δj = 1/

√
j.

In our setting, however, we prefer to treat triplets equally:
current triplets should not have more influence than preceding
triplets. On the other hand, we do not wish to over-fit to
the most recently obtained triplets. It is this observation that
motivates Passive-Aggressive (PA) Online Learning [5]. In
the RCKL setting, the general idea is that if the previous
solution Kj−1 satisfies a newly obtained triplet tj = (a, b, c)
by a margin of 1, then do not update the kernel (passive).
Otherwise, update the kernel so that the kernel is changed
the minimal amount, but tj is satisfied by a margin of 1
(aggressive). A fortunate side effect of choosing minimally
sized updates is that updates are less likely to result in non-
PSD matrices than larger steps, thus further reducing the
number of projections onto the PSD cone via our conservative
eigenvalue estimate (Section 4.2).

To derive a passive-aggressive update for ERKLE, we
wish to learn a magnitude of a stochastic step γj =
δjf(Kj−1, tj) with passive-aggressive properties. f as de-
fined by GNMDS in (4.13) is inherently passive, but if Kj−1
does not satisfy the margin constraint, it takes a step indepen-
dent of how close the previous solution is to satisfying tj . As
such, we wish to find a δj that takes an aggressive step. We
do this by solving the following optimization problem:

(4.14)
min
δj

δ2j

s.t. d2K′j
(a, b) + 1 ≤ d2K′j (a, c), δj ≥ 0



By (4.11) and (4.13), the first constraint can be rewritten as:

(4.15) d2Kj−1
(a, b)− d2Kj−1

(a, c)− 10δj + 1 ≤ 0

With the assumption that the triplet is not satisfied by a margin
of one in Kj−1, no update is required; otherwise, only a
positive value of δj can satisfy (4.15), making the positive
constraint on δj redundant. Also, the smallest δj that satisfies
(4.15) is the one that makes the left hand side exactly zero. As
a result, the inequality constraint can be handled as equality.
To find the optimum we first write the Lagrangian L (δj , α):

(4.16) δ2j + α
(
d2Kj−1

(a, b)− d2Kj−1
(a, c)− 10δj + 1

)
Taking the partial derivative of (4.16) with respect to δj ,
setting it to 0, and solving for δj results in δj = 5α.
Substituting this back into (4.16) makes the Lagrangian:

(4.17) −25α2 + α
(
d2Kj−1

(a, b)− d2Kj−1
(a, c) + 1

)
Taking the partial derivative of (4.17) with respect to α,
setting it to 0, solving for α and then substituting this back
into δj = 5α results in the minimum step size that satisfies
the margin constraint:

(4.18) δj =
d2Kj−1

(a, b)− d2Kj−1
(a, c) + 1

10

A similar passive-aggressive update can be derived using
the probability of a triplet being satisfied in STE. Consider
the following optimization:

(4.19)
min
δj

δ2j

s.t. p
K′j
tj ≥ P, δj ≥ 0

In (4.19) the minimal step size is chosen such that the
probability that a triplet is satisfied after the update is greater
than or equal to a given probability P ∈ (0.5, 1). Using
(4.19), we derive the following step size:

(4.20) δj =
d2Kj−1

(a, b)− d2Kj−1
(a, c) + κ

10

where κ = log (P ) − log (1− P ). The full derivation
is given in the extended version of this work [9]. Both
derivations reveal that passive-aggressive updates using STE
and GNMDS are similar. Setting P = e

1+e in (4.20) recovers
the GNMDS passive-aggressive step in (4.18), and changing
the margin in (4.18) recovers different settings of P .

Note that using (4.18) as a step size results in a K′j with
the intended passive-aggressive property, not necessarily Kj

after the projection. We choose to find a passive-aggressive
step size instead of a full update for computational efficiency.
Finding a true passive-aggressive step size with respect to

Kj would require iteratively projecting onto the PSD cone,
which is computationally prohibitive in the online setting.
In practice, d2K′j is a good approximation to d2Kj

, as their
difference is dependent on the magnitude of the (potentially)
negative eigenvalue of K′j , which tends to be small.

Even for a proper setting of δj , it has been shown that
stochastic methods perform best when multiple rounds of
updates or passes are performed on the observed samples [2,
20, 29]. For our problem setting, this indicates that ERKLE
may benefit from revisiting triplets that were previously used
to update the kernel. In our experiments we perform a
simple multi-pass scheme where for each new triplet, ERKLE
not only steps over the most recently obtained triplet, but
also a number of randomly sampled triplets from the set of
previously obtained triplets. We denote the number of “passes”
ERKLE performs each time a new triplet is observed as β.
Algorithm 1 of [9] describes this process in more detail. Using
this simple approach is sufficient for ERKLE to maintain high
accuracy while still ensuring computational efficiency.

5 Experiments
In this section, we evaluate ERKLE by comparing it to batch
RCKL methods. Batch methods are not truly applicable to
the online learning setting, but can be applied in what is often
called “mini-batches”. In the mini-batch learning setting,
every time a new batch ofm triplets are received, batch RCKL
is trained over all triplets obtained so far (e.g. if m = 100
after two mini-batches are received, then the batch methods
are trained using 200 triplets). Thus, after all triplets are
received via mini-batches, the batch methods are trained on
the full training set, as in the true batch setting.

We evaluate each method on four different data sets. First,
we start with a small-scale synthetic experiment to evaluate
how the methods perform in an idealized setting. Second, a
large-scale synthetic experiment is run to show how ERKLE
and batch compare in terms of practical run time. Third,
a data set of triplets over popular music artists is used to
evaluate how the methods perform in a real-world setting
with moderate triplet noise. Finally, ERKLE and batch RCKL
are evaluated on a data set of triplets over scene images, which
consist of a small number of triplets, thus focusing on the
performance of these methods with very little feedback.

For these experiments, we wish to see how the learned
kernels generalize to held out triplets, as triplets are obtained.
This is important in real-world applications where the goal is
to accurately model all the relationships among objects, not
just the observed ones. Because of this, we use normalized
test error for evaluation, which we define as the total number
of unsatisfied test triplets by a learned kernel divided by the
total number of test triplets. This metric effectively measures
how well each method can utilize the obtained (training)
triplets to generalize to unseen relative comparisons.

Unless otherwise noted, the experiments were run with
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Figure 1: Results from experiments on the small synthetic data set (10 trials)

the following specifications. Each method started with an
initial kernel set to identity in order to give no method an
advantage (all methods initially satisfy no triplets). All batch
methods were terminated after a maximum of 1000 iterations
or when the change in objective between iterations was less
than 10−7. We denote the batch methods with the suffix “-
Batch” (e.g. STE-Batch), the ERKLE variants with “-ERKLE”
(e.g. STE-ERKLE), and passive-aggressive ERKLE as PA-
ERKLE. The mini-batch size is 100, and all methods are
evaluated every 100 observed triplets.

We used the batch STE, GNMDS, and CKL (Crowd
Kernel Learning [25]) MATLAB implementations specified
by [27] in which the eig MATLAB function is used to perform
eigdecomposition for projection onto the PSD cone. ERKLE
was also implemented in MATLAB, where the eigs function is
used to find a single eigenvalue/eigenvector pair with smallest
eigenvalue. The τ hyperparameter was chosen to be the
best performing setting over ten varying options. The timed
experiments were performed on an Intel Core i5-4670K CPU
@ 3.4 GHz with 16 GB of RAM on a single thread. Each
experiment was performed with ten trials, each with different,
randomly chosen test, train and validation sets. The error bars
in the graphs represent the 95% confidence interval.

5.1 Small-Scale Synthetic Data Our first experiment is to
test each method on an ideal, small-scale, synthetic data set.
We created the synthetic data set by first generating 100 data
points (n = 100) in R50 from N (0, 1). Using the distances
between points, we answered all possible relative comparison
queries, resulting in 485,100 triplets. 10,000 triplets were
used as the train set and the rest were used as the test set.

Discussion: Figure 1a shows the effect that the learning
rate parameter δj has on the performance of ERKLE as more
triplets are observed in an online fashion. For a setting
of 1/j, the learning rate decays too rapidly to improve
performance significantly after j = 3000. The learning rate
1/
√
j performs better, but still levels off, faster than the final

two methods. The last two methods have learning rates that
are independent of the number of observed triplets. STE-
ERKLE with a constant learning rate and PA-ERKLE take
steps solely based on how well the current solution satisfies
the observed triplet, and vastly outperform the alternative
learning rates based on number of observations. This result
indicates that reducing the influence of a triplet because it
was observed later has an adverse effect on the ability of a
learned kernel to generalize to unobserved triplets.

Figure 1b shows the performance of STE-ERKLE (with
δj set to 1), and PA-ERKLE compared to three batch RCKL
methods. The τ hyperparameter was chosen by selecting the
best setting over choices as evaluated on the test set. With
a single pass over the data (β = 1), both ERKLE methods
outperformed all batch methods slightly. With ten passes
over the data, the ERKLE methods outperformed the batch
methods by a large margin. In addition, the batch methods
level off more quickly than the ERKLE methods, indicating
that if more triplets were obtained, the ERKLE methods
would further outperform even the batch methods. We believe
that these results show that by minimizing the expected risk
directly, ERKLE is able to learn a more general kernel than
batch methods that minimize empirical risk.

To compare the methods in an implementation-
independent manner, we evaluate two ERKLE methods and
two batch RCKL methods as a function of how many effective
“passes” each method performed on the data. For ERKLE,
this amounts to the setting of the β parameter. For the batch
RCKL methods, this is the number of full gradient steps it
takes. Each method was run over all training triplets with the
step size δj validated on the test set for the batch methods.
Figure 1c shows the results, and clearly indicates that if only
few passes through the data can be performed, then ERKLE
will outperform batch methods by a wide margin.

5.2 Large-Scale Synthetic Data Next, we evaluated how
PA-ERKLE compared to batch GNMDS in terms of practical
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Figure 2: Results from experiments on the large-scale synthetic data set (5 trials)

run time on a large scale experiment. For this experiment,
we generated 5,000 data points in the same manner as the
small-scale synthetic data. For each of the 5 trials, 10,000
randomly generated triplets were used as the train set and
50,000 were used as the test set. The batch methods were
run in mini-batches of 500 triplets due to time constraints.
The hyperparameter τ and the step size δi were chosen as the
settings that best performed on the test set.

Discussion: Figure 2a shows the cumulative run time of
one pass of PA-ERKLE, and 1 and 2 steps of batch GNMDS.
The times shown for the batch methods are for the best chosen
τ and not for the total time it took to find it. The figure shows
that a single pass of PA-ERKLE is often significantly faster
than a single gradient step of batch GNMDS. Two steps of
GNMDS takes even longer. ERKLE can perform online
updates much faster due to the efficient projection procedure
as well as the ability to skip certain projections by estimating
the lower bound. In this experiment, the mean number of
eigenvalue/eigenvector computations over the 5 trials was
724.2 with a standard deviation of 3.7. Hence PA-ERKLE
was able to skip the projection step roughly 93% of the time.
Figure 2b depicts the test errors of each method. Initially, the
batch methods perform better, but at around 2,500 triplets,
PA-ERKLE outperforms the batch methods. This indicates
that PA-ERKLE can produce truly online solutions in a single
pass over the data, while maintaining competitive results with
batch methods and having a faster run time.

5.3 Music Artist Similarity For the last two experiments
we performed evaluations on real-world data sets. First, we
performed an experiment using relative comparisons among
popular music artists gathered from a web survey. The
aset400 data set [7] contains 16,385 relative comparisons
over 412 artists. We randomly chose 10,000 triplets as the
train set, 1,000 as the validation set for the τ parameter,
and the rest were used as the test set. The aset400 data set
presents a challenge not present in the synthetic data: It has a

moderate amount of conflicting triplets, thus methods used in
the evaluation must deal with noise within the data.

Discussion: Figure 3a shows how ERKLE and batch
RCKL methods generalize to the test set. STE-ERKLE
performs considerably worse than the other methods, most
likely due to the noise in the observed triplets. The probability
pKt used in STE-ERKLE decays rapidly. Thus, triplets that
are in agreement with previously obtained triplets do not
influence the learned kernel greatly. However, a conflicting
triplet will make STE-ERKLE perform a relatively more
drastic update. PA-ERKLE, however, is much more robust
to noise due to the minimal step size taken to satisfy a triplet.
Because of this, PA-ERKLE performs as well as the batch
methods and often better when multiple passes are taken.

Figure 3b shows the training errors of each method. We
use normalized training error as an objective-independent
measure of how well each method fits to the observed triplets.
The STE-ERKLE models are greatly effected by the presence
of conflicts in that they do not learn a kernel that fits to a large
number of the observed triplets. PA-ERKLE, on the other
hand, is able to fit better to the set of observed triplets.

As previously discussed, dissimilar from batch methods
ERKLE does not use trace regularization. Experimentally,
however, we nevertheless find that our method outperforms
batch methods that use trace regularization, in either produc-
ing low-rank or high-rank kernels. To demonstrate this, in
Figure 3c we plot the ranks of the kernels learned by the batch
methods. In our experiments, the range of potential τ values
was set so that the batch methods never chose either the up-
per or lower bound. We did this to ensure that the range of
regularization options were sufficiently strict or lenient. We
observe that the batch methods generally produce low-rank
kernels under a small number of triplets, but as the number
of triplets are observed the rank increases. Our method is
able to better generalize without using trace regularization,
regardless of the preferred rank, due to the PA updates only
satisfying triplets to the necessary extent.
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Figure 3: Results from experiments on the aset400 data set (10 trials)

5.4 Outdoor Scene Similarity Our final experiment used
triplets over 200 randomly chosen images of scenes from the
Outdoor Scene Recognition (OSR) data set [19]. Relative
comparison queries were posed to 20 people via an online
system. After an initial 1200 randomly chosen queries were
answered , 20 “rounds” of 200 triplets were chosen according
to the adaptive selection criterion in [25], resulting in 3,600
total triplets. For each trial of this experiment, 1,000 triplets
were randomly chosen as the test set, 1,000 as the train
set, and 600 as the validation set for τ . This experiment
is especially challenging for two reasons. First, this is the
smallest experiment in terms of triplets, highlighting how
the methods perform with little feedback. In addition, the
adaptive selection algorithm chooses queries with the highest
information gain, hence, the triplets are intentionally chosen
to give disparate information about how the objects relate.

Discussion: Figure 4a depicts test errors on each
method. We observe that STE-ERKLE consistently outper-
forms STE-Batch, and in particular STE-ERKLE performs
well under a small number of triplets relative to all other
methods. PA-ERKLE is comparable or outperforms its batch
counterpart in GNMDS-Batch, given enough triplets (at least
500). However, PA-ERKLE performs quite well in training
error compared to all other methods, indicating that even in
such a challenging scenario, the passive-aggressive update
scheme minimally interferes with previously obtained triplets.

6 Conclusion and Future Work
In this work, we developed a method to learn a PSD kernel
matrix from relative comparisons given in an online fashion.
By taking advantage of the sparse and low-rank structure
of the online formulation, we show how to take stochastic
gradient descent updates of complexity O(n2). We show
how passive-aggressive online learning benefits our method
in terms of generalizing to unseen triplets, and in conjunction
with the stochastic gradient structure, enables us to perform
a small number of necessary PSD projections in practice.

Experimentally, we show on synthetic and real-world data that
our method learns kernels that generalize as well and often
better to held out relative comparisons than batch methods,
while demonstrating improved run-time performance.

For future work, we wish to improve online RCKL
in three ways. First, will explore the use of online trace
regularization. If trace regularization is naively applied to
the stochastic gradient in (4.9), the update becomes full-
rank and our efficient projection procedure cannot be used.
However, an efficient update scheme should be possible if the
kernel itself is low-rank. We will investigate novel methods
for appropriately weighting the trace in an online manner,
so that we are consistent with the parameter-free property
of PA-ERKLE. Second, PA-ERKLE performed well in our
experiments with moderate triplet noise, however, it could
be beneficial to explicitly handle conflicting triplets when
they are observed. This can be done out of model using a
denoising method [17], or in model using a threshold on the
passive-aggressive learning rate. Third, while we improve
the run time of RCKL methods in this work, ERKLE still
cannot be practically applied to a web-scale [26] number
of objects. To this end, we will investigate how to further
improve the run-time of our method. Finally, one of the
main benefits of having an online learning algorithm is the
natural application of active learning methods. Prior work
has proposed an adaptive selection scheme which operates in
mini-batches [25]; however, such a scheme is too expensive
to be applied online. We will investigate novel adaptive triplet
selection methods which are both efficient and informative.
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