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We present a benchmark for the evaluation and comparison of algorithms
which reconstruct a surface from point cloud data. Although a substantial
amount of effort has been dedicated to the problem of surface reconstruc-
tion, a comprehensive means of evaluating this class of algorithms is notice-
ably absent. We propose a simple pipeline for measuring surface reconstruc-
tion algorithms, consisting of three main phases: surface modeling, sam-
pling, and evaluation. We use implicit surfaces for modeling shapes which
are capable of representing details of varying size and sharp features. From
these implicit surfaces, we produce point clouds by synthetically generat-
ing range scans which resemble realistic scan data produced by an optical
triangulation scanner. We validate our synthetic sampling scheme by com-
paring against scan data produced by a commercial optical laser scanner,
where we scan a 3D-printed version of the original surface. Last, we per-
form evaluation by comparing the output reconstructed surface to a dense
uniformly-distributed sampling of the implicit surface. We decompose our
benchmark into two distinct sets of experiments. The first set of experiments
measures reconstruction against point clouds of complex shapes sampled
under a wide variety of conditions. Although these experiments are quite
useful for comparison, they lack a fine-grain analysis. To complement this,
the second set of experiments measures specific properties of surface re-
construction, in terms of sampling characteristics and surface features. To-
gether, these experiments depict a detailed examination of the state of sur-
face reconstruction algorithms.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© 2013 ACM 0730-0301/2013/13-ART20 $10.00

DOI 10.1145/2451236.2451246
http://doi.acm.org/10.1145/2451236.2451246

representations; G.1.2 [Mathematics of Computing]: Approximation—
Approximation of surfaces and contours

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Computer graphics, geometry pro-
cessing, surface reconstruction, point cloud, benchmark, indicator function,
point set surface, multi-level partition of unity

1. INTRODUCTION

Over the past two decades there has been an immense amount of
effort dedicated to the problem of surface reconstruction. The prob-
lem of surface reconstruction may be formulated as follows: given
a sampling of points measured on a surface, recover the original
surface from which those points came. The faithful representation
of real-world objects has a long history in computer graphics and
other fields such as cultural heritage [Levoy et al. 2000; Funkhouser
et al. 2011] and urban simulation [Frueh et al. 2005].

The generality of the problem has given rise to a wide variety of
surface reconstruction algorithms. The algorithms primarily differ
by the type of input point data and output reconstructed surface.
The input may be a single depth image, a registered point cloud,
or a registered point cloud equipped with normals. Moreover, the
modality of the point data plays a major role in reconstruction,
where various modalities from the 3D vision literature include op-
tical laser scanners, structured lighting, structure from motion, and
photometric stereo.

The form of output can be broken down into two main com-
ponents: surface representation and the dependency on the input
data. The surface representation may be a parametric surface, an
implicit surface, or a triangulated surface mesh. The dependency
on the input data can range from interpolating all of the input data,
interpolating a subset of the input, or approximating the input.

The focus of this work is on the evaluation and comparison of
surface reconstruction algorithms which take as input a registered
point cloud equipped with normals and output a triangulated sur-
face mesh which approximates the input data. More specifically, we
focus on input data acquired through triangulation-based scanning,
where normals are absent and must be computed from the points
themselves. This class of input is extremely broad, and quite com-
mon in point cloud data due to the rising ubiquity of triangulation-
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Fig. 1. Here we have synthetically sampled the Gargoyle model, and ran eight separate reconstruction algorithms on this point cloud. Note the differences
between the algorithms on the claw, where some algorithms over-smooth the data, while others result in spurious holes being produced. Our benchmark aims
to generate such imperfect point cloud data and study these various forms of error. The Gargoyle model is courtesy VClab, ISTI - CNR.

based scanners such as optical laser scanners. This class of output
is flexible for surface reconstruction, as triangle meshes are capable
of representing surfaces of arbitrary detail, while the approximation
requirement gives freedom in handling point clouds which contain
large imperfections.

Despite the vast amount of work in this class of algorithms, to
date there has been an insufficient means of evaluation. These al-
gorithms are typically run on acquired scan data. However, there
does not exist a computational representation of the surface from
which the scanned points were measured. Hence, it is not possible
to compare the reconstructed surface to the original surface, and it
is quite common for such approaches to instead provide a visual
comparison. Quantitative measures are typically done using syn-
thetically generated data, but existing quantitative evaluation ap-
proaches contain several shortcomings, such as the representation
of the reference shape and the sampling model.

Our benchmark for surface reconstruction rectifies these defi-
ciencies in evaluation, providing the following contributions:

—Realistic data. We use a collection of both simple and complex
shapes, where an implicit surface is used as the computational
representation. We then synthetically scan the implicit surface to
provide a collection of point clouds, where our scanning simula-
tion is validated against real data.

—Accuracy. By using implicit surfaces we have a precise means
of performing evaluation, in both positional and differential mea-
sures. We use particle systems to uniformly sample both the im-
plicit surface and the reconstructed surface mesh, minimizing
any potential bias of measure from the corresponding triangu-
lation.

—Comprehensiveness. The set of experiments demonstrates a
broad range of behavior across surface reconstruction algo-
rithms.

Part of the difficulty in establishing a comprehensive set of ex-
periments is the large variability in point clouds. In triangulation-
based scanning, a surface may be sampled under a wide variety
of conditions, producing point clouds containing such character-
istics as noise, outliers, nonuniform sampling, and missing data.
This variability is further enhanced when scan data is processed
to produce an oriented point cloud, where registration and normal
orientation must be performed. Considering all of these factors, it
is difficult to determine the effectiveness of a surface reconstruc-
tion algorithm with respect to an arbitrary point cloud; see Figure 1
for an illustration. In light of this, we divide our experiments into
two sets, one giving a macro view of reconstruction, and the other
giving a micro view.

The first set of experiments samples a small number of complex
shapes under a large variety of scanner settings. A point cloud for
a given shape provides us with a number of evaluation measures.
We aggregate each measure over all point clouds to generate an er-
ror distribution for a given shape. This serves two purposes. First,
it provides us with an objective means to compare algorithms by
looking at their performance over a distribution, rather than a single
point cloud which may bias a certain class of algorithms. Second,
it illustrates how effective an algorithm is at reconstructing a sin-
gle shape, given that the shape may be sampled in an unbounded
number of ways.

The second set of experiments complements the first, by mea-
suring algorithmic performance in the presence of specific sam-
pling and shape properties. For these experiments we wish to gen-
erate scans which contain specific properties such as different lev-
els of sparsity, missing data, and noise. However, complex shapes
are inappropriate to use since their complexity makes it difficult to
controllably elicit these properties. Hence we use a set of simple
shapes, some strictly smooth and others containing sharp features,
each sampled in ways to highlight specific properties for examining
surface reconstruction algorithms.
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Lastly, we have made our dataset and benchmark code available
to the public (at: http://reconbench.org). We expect our ex-
periments to benefit the surface reconstruction research community
in two ways. The first set of experiments may be used to obtain an
immediate comparison across reconstruction algorithms, while the
second set of experiments should prove useful to observe specific
algorithmic behavior. Combined, our benchmark provides compre-
hensive insight into this class of surface reconstruction algorithms.

2. RELATED WORK

Surface Reconstruction. Broadly speaking, we may classify sur-
face reconstruction algorithms by their expected input and the type
of output they produce.

One class of algorithms takes as input an unoriented point cloud
and produces an interpolating surface in the form of a triangula-
tion that uses a subset of the input points as vertices. Often these
“connect-the-dots” algorithms are filtration-based techniques; they
first build a triangulation with more elements than needed, and
then prune away triangles not near the surface. By using the De-
launay triangulation coupled with modeling the point cloud as
an ε-sample [Amenta and Bern 1999], many of these algorithms
come with provable guarantees regarding the quality of the re-
construction. Extensive research efforts have been devoted to this
model, producing the Cocone [Amenta et al. 2002] and Power
Crust [Amenta et al. 2001] algorithms. Many other extensions have
been compiled in a recent survey [Cazals and Giesen 2006] and
monograph [Dey 2007].

Restricting the reconstruction to have vertices only on the input
point cloud can be limiting when the data is non-uniform, incom-
plete, or noisy. Algorithms that build approximating surfaces give
a flexible alternative in these situations. Here the output is often
the triangulation of an isosurface of a best-fit implicit function of
the input. Many of these algorithms [Hoppe et al. 1992; Boisson-
nat and Cazals 2002] compute a distance field by estimating the
tangent plane at every point and computing closest distances us-
ing these tangent planes. The method of VRIP [Curless and Levoy
1996] takes advantage of the range scans acquired through laser
triangulation to construct a volumetric signed distance field which
merges the scans in a least-squares sense.

Surface approximation from point sets with oriented normals has
gained recent attention. Approaches range from computing an in-
dicator function [Kazhdan 2005; Kazhdan et al. 2006; Alliez et al.
2007; Manson et al. 2008], to locally fitting functions and mov-
ing least squares methods [Alexa et al. 2003; Ohtake et al. 2003;
Ohtake et al. 2005b; Fleishman et al. 2005]. These approaches
are well-equipped to handle various imperfections in the data, and
comprise an interesting class of algorithms to study for compar-
ison and evaluation. However, normal estimation in the presence
of imperfect data remains a difficult problem [Mitra and Nguyen
2003; Dey et al. 2005], and a thorough study of normal estimation
is beyond the scope of our benchmark.

Reconstruction Evaluation. In the area of surface reconstruc-
tion evaluation, most of the above approaches employ qualitative
methods when comparing to other reconstruction algorithms. This
usually takes the form of a visual comparison. However, signif-
icantly less work has been devoted to obtaining quantitative mea-
sures. This is due to the common use of scan data, where there is no
longer a computational representation of the shape. For synthetic
data, the works of [Kazhdan 2005; Manson et al. 2008; Süßmuth
et al. 2010] take a triangle mesh as ground truth, and randomly
sample the triangles directly to obtain a point cloud. This form of
sampling, however, does not reflect the type of data obtained from
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Fig. 2. Overview of our benchmark. First we create an implicit represen-
tation of a surface mesh. We then sample this implicit surface by syntheti-
cally scanning the shape to obtain individual range scans, and consolidate
the scans into a single oriented point cloud via registration and normal esti-
mation. We run a reconstruction algorithm on this oriented point cloud, and
compare this output to the implicit model and a dense uniform sampling
of the implicit shape to obtain quantitative results. The Gargoyle model is
courtesy VClab, ISTI - CNR.

a scanner which is subsequently organized into a point cloud. The
works of [Hoppe et al. 1992; ter Haar et al. 2005] obtain synthetic
scans of a triangle mesh from ray tracing or z-buffering the mesh.
These methods can produce realistic data under the assumption of
clean data, but are insufficient for replicating common scan arti-
facts. While our approach also generates synthetic range data, it
is more realistic since we simulate an optical triangulation-based
scanner.

A drawback of all of these approaches is the use of a triangle
mesh as ground truth. Sampling a triangle mesh, either directly or
through synthetic scans, may produce “faceted scans”, where mul-
tiple samples lie on a single triangle. This can be misleading for re-
construction algorithms, as the reconstruction may preserve these
faceted portions. It is also problematic to use a triangle mesh as
ground truth for comparing surfaces. METRO [Cignoni et al. 1998]
has become quite common for comparing two triangulated surface
meshes, however for surface reconstruction we are more interested
in seeing how well a reconstructed surface compares to a real shape
which is smooth, not necessarily a faceted approximation. More-
over, if we are interested in comparing differential quantities, we
have an ill-posed definition of surface normals when using a trian-
gle mesh as ground truth.
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Similar Benchmarks. Finally, related benchmarks exist in the
area of 3D stereo reconstruction – for binocular stereo [Scharstein
and Szeliski 2002] and multiview stereo [Seitz et al. 2006]. Both
use real-world data as input to the various acquisition methods.
Multiview stereo, in particular, applies VRIP [Curless and Levoy
1996] to each range scanned surface, and uses the resulting triangle
mesh as the gold standard for comparison. However, as pointed out
by [Kazhdan et al. 2006], VRIP is certainly not free of errors, and
arguably every surface reconstruction algorithm will contain errors
in the presence of imperfections in scanned data. Thus, having a
clear understanding of these types of errors is crucial when using a
reconstructed surface as a gold standard.

3. OVERVIEW

Our benchmark is broken up into three main phases: surface mod-
eling, sampling, and evaluation. See Figure 2 for the full pipeline.

We start with an implicit surface. We model piecewise-smooth
surfaces using integrated polygonal constraints, and approximate a
triangle mesh with an implicit surface, as detailed in Section 4.

We then sample this implicit surface to obtain an oriented point
cloud. We simulate the process of an optical triangulation scanner
in order to produce range scans. We slightly overlap the range scans
and register them through a rigid-body registration algorithm. From
the registered point cloud, we then compute and orient normals
for each point, producing an oriented point cloud suitable for the
class of algorithms under consideration. These steps are described
in more detail in Section 5.

We next run a surface reconstruction algorithm using the ori-
ented point cloud as input. This gives us a triangle mesh, which
we evaluate by comparing to the implicit surface and a dense uni-
formly sampled point cloud of the implicit surface. We then con-
struct positional and normal error metrics, demonstrated in Figure 2
as individual distributions of point-to-point correspondences. This
is explained in detail in Section 6.

4. SURFACE MODELING

In modeling ground truth data, care must be taken in the surface
representation, as it impacts the rest of our pipeline. Although trian-
gulated surfaces are popular and easy to work with, we use smooth
and piecewise-smooth surfaces as ground truth, as it benefits the
sampling and evaluation phases as follows:

—Sampling. Our laser-based scanning simulator requires a surface
equipped with a smooth normal field in order to best model an
optical laser scanner. As the normal field of a triangulated surface
is discontinuous between triangle faces, this surface representa-
tion can adversely impact our scanning simulator.

—Evaluation. The surface reconstruction algorithms under con-
sideration assume a point cloud sampled from a smooth surface,
so using a smooth surface for quantitative evaluation respects an
algorithm’s assumptions. Moreover, a smooth normal field per-
mits us to reliably evaluate differential quantities in the recon-
struction.

The implicit surfaces that we use to model piecewise-smooth
objects are defined via a novel implicit function definition from
integrated smoothness constraints. This method integrates weight
functions over polygons. It also allows us to define sharp features
on object surfaces.

4.1 Polygonal MPU

Our implicit representation is a straightforward extension of Multi-
level Partition of Unity (MPU) [Ohtake et al. 2003] applied to a
triangulated surface, with the main distinction being that we inte-
grate weight functions over polygons. We use the weight function
of [Shen et al. 2004], defined for a given point x ∈ R3 and for an
arbitrary point on a triangle t, p ∈ t:

w(x,p) =
1

(|x− p|2 + ε2)
2 (1)

Here, ε is a smoothing parameter. We may now integrate this weight
function over the entire triangle t:

w(x, t) =

∫
p∈t

w(x,p)dp (2)

For evaluating Equation 2, [Shen et al. 2004] propose a method for
numerical integration. However, we derive a closed form solution
for this expression. This prevents potential numerical inaccuracies
caused by a quadrature scheme, which could be detrimental to hav-
ing a reliable benchmark. We outline the derivation in Appendix A.

Equipped with a mechanism for integrating weights over poly-
gons, we proceed with MPU by hierarchically fitting shape func-
tions to a triangulated surface with triangle set T = {t1, ..., tn}.
We adaptively build an octree over T , where for each cell we as-
sociate a sphere whose radius is the length of the cell’s diagonal.
We then gather all triangles which are contained in, or overlap the
sphere, and fit a shape function to those triangles.

In practice we use linear functions for our shape functions, where
for each cell i we associate the function gi(x) = xTni + bi. For
all triangles which belong to the sphere of cell i, Ti ⊂ T , we fit the
shape function as follows:

ni =

∑
t∈Ti nt

∫
p∈t w(si,p) dp∑

t∈Ti

∫
p∈t w(si,p) dp

(3)

bi = −
〈∑

t∈Ti

∫
p∈t pw(si,p) dp∑

t∈Ti

∫
p∈t w(si,p) dp

,ni

〉
(4)

Here, nt is the triangle normal of t and si is the center of the sphere
for cell i. Although one may use higher order shape functions such
as quadrics, we found the difference to be negligible. The main
difference was that for linear functions we required a deeper octree
to adequately approximate T .

The octree is built such that each cell is subdivided only if the
zero set of its shape function deviates sufficiently from the sphere’s
triangles. If the cell’s sphere is empty to start with, we increase the
sphere’s radius until it encompasses a sufficient number of triangles
(which we take to be six). This gives a covering of the space with
overlapping spheres. We may then evaluate the implicit function at
a point by blending all shape functions whose spheres contain that
point:

f(x) =

∑
i qi(x)gi(x)∑

i qi(x)
(5)

Here, qi is a quadratic b-spline function centered at si.
To preserve sharp features, we follow [Ohtake et al. 2003] in de-

tecting sharp features within a leaf cell and consequently applying
CSG operations for exact feature preservation. We identify sharp
features using a threshold on dihedral angles. We then apply union
and intersection operations on overlapping shape functions to ex-
actly preserve the sharp feature. We support sharp feature curves
and corners containing a maximum degree of four.
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Fig. 3. Complex shapes created via our Polygonal MPU scheme. In our experiments these shapes are synthetically scanned under a wide variety of typical
use case scan parameters. This class of shapes contains many interesting characteristics for scanning, such as multiple scales of detail, nontrivial topology, and
sharp features. The Gargoyle model is courtesy VClab, ISTI - CNR, the Dancing Children model is courtesy AIM@SHAPE, the Anchor model is courtesy [Dey
et al. 2003], and the Daratech model is courtesy [Regli and Gaines 1997] via the INRIA Gamma database.

Fig. 4. Simple shapes created via our Polygonal MPU scheme. In our ex-
periments these shapes are scanned in a precise a manner in order to repli-
cate specific scanning difficulties, such as sparsity, missing data, and noise.
The Mailbox model is courtesy [Dey et al. 2003].

4.2 Benchmark Shapes

Our first set of experiments consists of shapes which contain differ-
ent types of complexities, see Figure 3 for these shapes. The Gar-
goyle model contains details of various feature sizes, ranging from
the bumps on the bottom to the ridges on its wings. The Danc-
ing Children model is of nontrivial topology, containing tunnels of
different sizes and features such as the rim of the hat on the left
child and wrinkles in the cloth. The Quasimoto model is represen-
tative of a shape containing articulated parts, such as arms, legs,
and head. The Anchor model contains sharp features, moderately-
sized tunnels, as well as a single deep concavity. Lastly, the Darat-
ech model contains sharp features, small tunnels, as well as thin
surface sheets. We note that the Gargoyle, Dancing Children, and
Quasimoto models were scanned from objects and subsequently re-
constructed, which has two potential consequences: every surface
point is visible from some position of the scanner, and the implicit
function may inherit smoothing from the original surface recon-
struction algorithm.

The second set of experiments use simple shapes, see Figure 4.
The Bumpy Sphere contains smooth features at varying scales. The
Spiral shape is primarily composed of a thin cylindrical feature.
Lastly, the Mailbox consists of straight and curved sharp features.

5. SAMPLING

The intent of our sampling scheme is to replicate the acquisition
process of a triangulation-based scanner, in order to produce re-
alistic point clouds. To this end, sampling is composed of three
intermediate stages: synthetic range scanning, registration, and ori-

entation. Common properties found in scanned data are illustrated
in Figure 5. See Figure 6 for an illustration of our synthetic scan-
ner’s capability in replicating such properties.

5.1 Synthetic Range Scans

We simulate the acquisition of range scans by modeling an optical
laser-based triangulation scanning system. Such scanning systems
suffer from random error and systematic error. Random error is
due to physical constraints, such as noise in the laser, variations
in the reflectance due to surface materials, and non-linear camera
warping. Systematic error is the result of imprecise range measure-
ment due to the peak detection algorithm. Our range scans are gen-
erated by synthesizing random error, while reproducing systematic
error by performing standard peak detection.

Random Error Synthesis. We synthesize random errors by gen-
erating a series of radiance images, where each image is the result
of a single laser stripe projection onto the implicit surface. To this
end, given a pinhole camera at position c and a baseline configura-
tion, we first generate the noise-free range data by ray tracing the
implicit surface. We reject all points that are not visible from the
laser position, a function of the baseline distance. This provides us
with a set of pixels containing geometry P = {p1,p2, ...,pn} and
their corresponding points X = {x1,x2, ...,xn}.

We now project laser stripes onto the range geometry.
We model each laser stripe projection according
to a cylindrical projection, parameterized by laser
position l, field of view of the laser stripe α, and
triangulation angle θ. The triangulation angle is
defined with respect to an initial laser stripe plane.
We may then define the laser stripe frustum as the
volume enclosed by the two planes {l, θ − α

2
} and {l, θ + α

2
}. A

point is considered to be contained within the frustum if it is within
positive distance to both planes. The inset depicts a 2D illustration
of this configuration, where the red points of the green curve are
considered to be within the laser’s frustum.

For a single laser stripe, we gather all range geometry which is
contained within the stripe. This defines the set of “active” pixels
which the laser stripe contributes to. We then determine the noise-
free radiance at pixel pi due to a laser stripe at triangulation angle
θ by [Curless and Levoy 1995]:

Lθ(pi) = |ni · ω|e
−2.0(d(xi))

2

β2 (6)
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(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 5. Common properties of scanned data on a sampled curve. The green
curve is the true curve, while the red points are the oriented points sampled
from the curve.

Here, ni is the normal of the implicit surface at xi, ω is the unit
vector pointing towards the laser position from xi, d : R3 → R
is the closest distance to the center of the laser frustum, and β is
the width of the frustum at xi. Here we assume that the surface
is purely diffuse, hence the BRDF is reduced to a constant factor
which we omit.

In practice, diffuse surfaces suffer from noise in the form of laser
speckle, where surface roughness contributes to variations in the
reflectance [Baribeau and Rioux 1991]. We observe that this form
of noise is more significant further away from the center of the
laser stripe frustum. We model this as normally distributed additive
noise, where the variance is the distance away from the center of
the laser stripe:

L̃θ(pi) = Lθ(pi) + ηεσ(xi) (7)

Here, η is a user-specified noise magnitude, and ε is a random vari-
able normally distributed with variance σ, the distance from the
center stripe. In addition, we also allow for smoothing of the noisy
radiance image by convolving L̃θ with a Gaussian kernel of a user-
specified bandwidth.

Systematic Error. For each corrupted radiance image L̃θ , we
next perform peak detection in order to find each pixel’s laser stripe
plane. From the laser stripe plane, depth is obtained by triangula-
tion. A common assumption in many peak detection algorithms is
that the radiance profile, either over space or time (i.e. triangula-
tion angle), is Gaussian [Curless and Levoy 1995]. However in the
presence of depth discontinuities, curved surfaces, and noise, this
assumption is violated, producing systematic error.

To this end, we consider all radiance images L̃θ defined for each
triangulation angle θ ∈ {θ1, θ2, ...θm}, where m is the number
of laser stripes. For each pixel, we consider its radiance profile
as θ increases. We fit a Gaussian to this radiance profile via the
Levenberg-Marquardt method. This Gaussian provides us with a
mean, which determines the stripe plane, as well as a peak mag-
nitude and variance, both of which are used for rejecting low-
confidence range data.

Please see Appendix B for the full list of scanning parameters
and common parameter settings.

(a) Uniform sampling (b) Nonuniform sampling

(c) Noisy data (d) Misaligned scans

Fig. 6. Common characteristics of 3D scans. These point clouds were gen-
erated using our synthetic scanner, illustrating our capability to replicate
common scan properties. In the noise and misalignment insets we have
color mapped the points by their distance away from the implicit shape,
with yellow being far and green being close. The Dancing Children model
is courtesy AIM@SHAPE.

5.2 Validation

It is important to verify that the range scans we are producing con-
tain artifacts found in real scans. To this end, we validate our syn-
thetic scans by comparing them to data acquired by commercial
scanning systems. We illustrate our capability of replicating noise
and missing data artifacts, which arguably have the greatest impact
on surface reconstruction. We are not interested in exactly repro-
ducing scans produced by commercial scanning systems. Most sys-
tems perform post-processing which is far beyond the scope of our
scanning simulation. Instead, we show that our scanning simulation
is expressive enough to generate a range of scan artifacts, while still
capable of generating artifacts of a commercial scanner with proper
scan parameters. To perform validation, we first 3D print a given
implicit surface, then scan the printed model, and lastly register the
real scan to the implicit surface in order to compare against our
synthetic scan.

We have manufactured the Gargoyle model by 3D printing,
through the company Shapeways [Shapeways 2011]. The minimum
detail at which models may be manufactured through Shapeways is
0.2mm. We then scan the model with an optical triangulation-based
scanner, namely the NextEngine scanner [NextEngine 2011]. The
scanner has a maximum accuracy of 0.127mm at its finest reso-
lution. For surfaces at an optimal distance from the scanner, with
normals roughly aligned to the scanner’s optical axis, we found this
to be true. However for a complex shape like the Gargoyle, as we
will demonstrate, the accuracy can vary and the noise magnitude
becomes greater than the shape’s resolution.

To compare a real scan to a synthetic scan, we first register the
real scan to the implicit surface. We perform ICP under a rigid-body
deformation in order to best align the real scan to the implicit sur-
face. As the NextEngine does not provide specifics on their CCD
sensor, we take the depth image and use the camera calibration tool-
box [Bouguet 2010] to obtain the intrinsic and extrinsic camera
parameters. We feed these camera parameters in to our synthetic
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Fig. 7. Comparison of noise profiles between our scanning simulation in
increasing noise magnitude (bottom), and a NextEngine scan (top-center).
Note that real scanner noise takes the form of bumps aligned in the direction
of the laser scan projection (top-right), and our synthetic noise is able to
capture this anisotropic noise over varying noise magnitude. The Gargoyle
model is courtesy VClab, ISTI - CNR.

scanning system to obtain a comparable range scan. We note that
a small non-rigid deformation might be preferable to a rigid-body
deformation for registration due to small nonlinear camera defor-
mation artifacts [Brown and Rusinkiewicz 2007]. However, this ad-
versely impacts camera calibration and hence is unsuitable for our
purposes.

Noise Validation. In our scanning simulation, noise is strongly
dependent on laser stripe resolution, laser stripe field of view, noise
magnitude, and image smoothing bandwidth. As NextEngine does
not provide these parameters for their system, to compare noise
against the NextEngine scanner we have best estimated the stripe
resolution, field of view, and smoothing bandwidth, while varying
the noise magnitude. See Figure 7 for the comparison. Note that
real scanner noise is in fact anisotropic - a function of the base-
line [Abbasinejad et al. 2009]. Hence we see “bumps” which are
slightly aligned with the direction of the laser projection in the
NextEngine scan. Our synthetic scans demonstrate this anisotropy
as well. We show that by tuning the noise magnitude, we can pro-
duce a variety of noise profiles, including something similar to that
of the NextEngine scanner.

Missing Data Validation. Missing data in a range scan is typi-
cally the result of the rejection of low-confidence range data. In our
scanning simulation, this is related to the peak intensity threshold,
where a small peak may indicate a poor Gaussian fit. To compare
the missing data profile from our scanning simulation to that of the
NextEngine scanner, we vary the peak detection threshold, see Fig-
ure 8. The NextEngine profile seems to correspond to a particular
threshold. Our tunable parameter for peak detection is based on this
threshold for the experiments in Section 7.

5.3 Scanning and Registration

Given that we have a means of acquiring range scans, next we
must determine where to scan. It is extremely difficult to automate
the process of positioning/orienting a scanner, as this is inherently
a manual process. We assume an ideal environment in which we
place the scanner at uniformly sampled positions over the bound-
ing sphere of the object, such that the camera is oriented to look at
the object’s center of mass. Note that such acquisition systems are
starting to gain popularity [Vlasic et al. 2009].

From these individual range scans, we next register them into
a single coordinate system. First we overlap the scans by a pre-

Fig. 8. A comparison of missing data between our scanning simulation
in increasing peak threshold (bottom), and a NextEngine scan (top-center).
Note the similarities in regions of missing data between our scan (bottom-
right) and the NextEngine scan, primarily due to the grazing angle at which
the laser strikes the surface, resulting in a low level of radiance. The Gar-
goyle model is courtesy VClab, ISTI - CNR.

scribed amount. This is achieved by applying a small, random rota-
tion to each scan, where initially each scan is in a common global
coordinate frame. We then run locally-weighted ICP [Brown and
Rusinkiewicz 2007] to align the scans. Note that the amount of
overlap effectively determines the quality of the alignment. Less
overlap means a poorer initialization, and the optimization process
may hit an undesirable local minimum causing misalignment.

5.4 Orientation

From the registered point cloud, we must assign an oriented normal
to each point. To estimate a point’s local tangent plane, and hence
its unoriented normal, we gather its k-nearest neighbor points and
perform PCA. Note that this method may produce noisy tangent
planes due to nonuniform sampling, noise, misalignment, and miss-
ing data.

We allow normal orientation to be performed using two different
methods. The first method chooses the normal direction which has
smallest angle with the vector formed from the scanner position to
the sample point. The second method is the approach of [Hoppe
et al. 1992] which forms a minimum spanning tree over the point
cloud to propagate normal directions. Both methods can produce
normals oriented in the opposite direction, primarily due to noise
in the estimated tangent planes. In particular, the method of [Hoppe
et al. 1992] may result in large regions of inverted normals due to
sharp features and nonuniform sampling.

6. EVALUATION

In order to evaluate the quality of a surface mesh M output by a
reconstruction algorithm against the input implicit surface Ω, we
take the view of discrete differential geometry for defining error
measures. As illustrated in [Hildebrandt et al. 2006], pointwise
plus normal convergence of a polyhedral surface to a smooth sur-
face implies convergence in: the metric, surface area, and Laplace-
Beltrami operator. In their context, pointwise convergence is mea-
sured in terms of Hausdorff distance and normal convergence is
measured as the supremum of the infinity norm over all normals.
We take their basic framework and expand it to include other error
measures, in order to provide a more informative evaluation.
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Fig. 9. A situation where the Φ mapping produces an incorrect shortest
distance correspondence. The dashed red line indicates the normal line from
α to x, giving us an inaccurate correspondence since β is closer to x than
α. So we instead take (x,β) as a correspondence.

6.1 Shortest Distance Maps

To measure error, we first construct shortest distance maps, which
defines the correspondence for a given point on one surface as its
closest point on the other surface. Let the closest point function
D : M → Ω map a point of the output polygonal surface M to its
closest point on the implicit surface Ω, and define Φ = D−1 to be
the inverse map of D. Notice that Φ(α) is generally not the closest
point on M to α ∈ Ω, so that Φ(α) may be undefined for some α
and Φ is not one-to-one everywhere.

We wish to sample Φ nearly uniformly on Ω, so as to be able to
make accurate estimates of mean distance and normal error. This is
a departure from the technique of METRO [Cignoni et al. 1998],
which only requires dense sampling. We build a point sample on Ω
using the particle system method of [Meyer et al. 2007]. We empir-
ically chose the uniform inter-particle distance for each shape so as
to preserve features. Denote PΩ as the resulting sample set.

For each sample point α ∈ PΩ, we shoot a ray in the normal
direction towards M to get a candidate x = Φ(α) [Hildebrandt
et al. 2006]. If the closest sample point to x in PΩ, denoted β,
is indeed α, then we accept it as a closest point correspondence.
Otherwise we use (x,β) as the correspondence, see Figure 9 for a
2D illustration. From this process we obtain a set of closest point
correspondences:

CΩ = {(x,α) | α ∈ PΩ,x = Φ(α)} (8)

We also construct a dual map Ψ: M → Ω, using the same
methodology. Instead of choosing an inter-particle distance during
the sampling, we fix the number of sample points, since M may
be arbitrarily complex. We denote PM as the resulting uniformly-
spaced sample set onM . We thus obtain the following set of closest
point correspondences:

CM = {(α,x) | x ∈ PM ,α = Ψ(x)} (9)

6.2 Discrete Error Measures

Given these maps we define a variety of discrete error measures be-
tween Ω and M . Denoting |S| = |CΩ|+ |CM |, Hausdorff distance
is approximated by:

H(Ω,M) = max
{

max
(x,α)∈CΩ

|x−α|, max
(α,x)∈CM

|α− x|
}

(10)

While mean distance is approximated by:

µ(Ω,M) =
1

|S|

( ∑
(x,α)∈CΩ

|x−α|+
∑

(α,x)∈CM

|α− x|
)

(11)

These measures depict error in
very different ways, as the inset
illustrates. Here the circle is the

smooth shape, while the piece-
wise linear curve is the approxi-
mating mesh. Hausdorff distance
will be large for the pair of shapes
on the left, while mean distance will be rather small. For the pair of
shapes on the right, the mean distance will be much larger than the
pair of shapes on the left, while Hausdorff distance will be less.

From these shortest distance correspondences, we have a method
of measuring higher-order geometric properties, by comparing dif-
ferential properties at the correspondences. This is analogous to
defining pullbacks on Φ and Ψ. We measure normal angle de-
viations in a similar manner to distance measures. If we denote
γ(α,x) = ∠(NΩ(α),NM (x)), the maximum and mean angle
deviation of point correspondences, respectively, are:

HN (Ω,M) = max
{

max
(x,α)∈CΩ

γ(α,x), max
(α,x)∈CM

γ(α,x)
}

(12)

µN (Ω,M) =
1

|S|

( ∑
(x,α)∈CΩ

γ(α,x) +
∑

(α,x)∈CM

γ(α,x)
)

(13)

In practice we take NM to be triangle normals, as opposed to
more sophisticated normal estimation methods [Meyer et al. 2002].
Such methods are sensitive to the triangulation and typically as-
sume smoothness in the normal field. As a result, the presence of
sharp features can result in undesirable over-smoothing.

Comparison with METRO [Cignoni et al. 1998]. An alter-
native might have been to use METRO to compare the original
meshes with the output meshes. However, there would have been
two issues in using a mesh for both sampling and evaluation. First,
there would have been cases in which many points of a synthetic
scan all lie on one triangle, an undesirable artifact. Second, we
would have needed to estimate normals on the input triangle mesh
for comparison, introducing more error.

As an alternative, we could have used the implicit surface for
sampling and an isosurface of the implicit surface for evaluation.
However, errors in isosurfacing can lead to errors in the evalua-
tion, since a reconstruction algorithm tries to recover the implicit
surface, not its isosurface.

6.3 Algorithms

We have chosen a wide variety of publicly available surface re-
construction algorithms to test our benchmark. For the sake of fair
comparison, we have only used algorithms which take an oriented
point cloud as input, and output an approximating surface. Here,
we provide a categorization and brief description of each algorithm
along with an abbreviation. This abbreviation is used to identify the
algorithms in the experiments.

Indicator Function. This class of algorithms reconstructs a
three-dimensional solid O by finding the scalar function χ, known
as the indicator function, defined in R3 such that:

χ(x) =

{
1 x ∈ O
0 x /∈ O . (14)

Where the surface Ω is then defined by ∂O. In practice, these ap-
proaches approximate χ by operating on a regular grid or an octree,
and generate Ω by isosurfacing the grid.

Poisson surface reconstruction (abbr. Poisson) [Kazhdan et al.
2006] solves for χ by noticing that ∇χ should agree with the nor-
mal field N at ∂O. This amounts to inverting the gradient operator.
Hence, χ is found by solving the Poisson equation:

∇ · ∇χ = ∇ ·V (15)
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Here, V is the smoothed normal field defined throughout the vol-
ume. The Poisson equation is efficiently solved only near the sur-
face by using an adaptive multigrid solver defined on the octree
built on the point cloud. Note that use of an octree may result in
low grid resolution in regions of missing data.

An alternative method of constructing the indicator function is
to solve for it indirectly by projecting χ onto a basis, and then
performing an inverse transform to obtain χ. By invoking Stokes
theorem, this projection need only be performed on ∂O:∫

O

∇ ·F(p)dp =

∫
∂O

〈F(p),N(p)〉 dp (16)

Here, F is a vector-valued function whose divergence∇·F defines
the basis. Note that these methods are equivalent to solving Equa-
tion 15, where properties of the basis functions are used to simplify
the original problem.

Fourier surface reconstruction (abbr. Fourier) [Kazhdan 2005]
employs the Fourier basis as part of their solution. For efficiency
they use the Fast Fourier transform (FFT), hence requiring a regular
grid and the grid resolution being a power of two.

Wavelet surface reconstruction (abbr. Wavelet) [Manson et al.
2008] employs a Wavelet basis for the solution of Equation 16.
In our experiments we use the 4-tap Daubechies basis. Due to the
multiresolution structure of wavelets, they use an octree for the ba-
sis projection. Hence, similar to Poisson, this method may result in
limited grid resolution over regions of missing data.

Point Set Surfaces. Point set surfaces (PSS) are defined based
on moving least squares (MLS), where a projection operator is used
to define a surface by its collection of stationary points. A point is
considered stationary when its projection is the identity map. Orig-
inally defined for unoriented points, its definition is greatly simpli-
fied when considering points equipped with normals, and may be
used for surface reconstruction by considering its implicit surface
definition, rather than its projection operator.

Basic PSS methods use a weighted combination of linear func-
tions to locally define the surface at every point. Borrowing ter-
minology from [Guennebaud and Gross 2007], we use two dif-
ferent definitions in our experiments: simple point set surfaces
(abbr. SPSS) [Adamson and Alexa 2003] and implicit moving least
squares (abbr. IMLS) [Kolluri 2005]. The implicit surface defini-
tion of SPSS is:

f(x) = n(x)T (x− c(x)) (17)

Here, n is a weighted average of normals in a neighborhood of x,
and c is the weighted centroid in a neighborhood of x. The weights
used in computing the normal and the centroid are derived from a
smooth, positive functionwx defined with respect to x, which gives
points closer to x larger influence. IMLS is defined as the implicit
function:

f(x) =

∑
i wx(pi)(x− pi)

Tni∑
i wx(pi)

(18)

We note that IMLS is a weighted average of linear functions,
whereas SPSS is a single linear function, whose centroid and nor-
mal is a weighted average of points and normals, respectively.

Algebraic point set surfaces (abbr. APSS) [Guennebaud and
Gross 2007] uses spheres defined algebraically as the shape func-
tion. Rather than directly obtaining the implicit function at a point,
APSS fits a sphere to a neighborhood of points, requiring the so-
lution of a linear least squares system for every point. By using a
higher-order function, the method can be more robust to sparse data
than SPSS and IMLS.

For our experiments, the software package provided by Gaël
Guennebaud contains implementations of SPSS, IMLS, and APSS.
Each PSS is evaluated over a regular grid, and the reconstructed
surface is obtained by isosurfacing the zero level-set. In the soft-
ware, neighborhoods used to locally fit functions are estimated at
each point based on the density of the input point cloud. In the
presence of missing data this may produce holes in the output due
to empty neighborhoods. This has an impact on evaluation, which
we discuss in the experiments sections.

Multi-level Partition of Unity. In our own implicit surface def-
inition we use a variant of Multi-Level Partition of Unity (MPU)
applied to polygon soup, and so we refer to Section 4.1 for details
about the overall approach, noting that the construction of MPU
with points is quite similar to that of polygons. In our experiments
we use three variants. First we use the original approach of [Ohtake
et al. 2003] (abbr. MPU), where linear functions are used as low-
order implicits. We opted not to use the fitting of sharp features, as
we found its sharp feature detection to be rather sensitive and fre-
quently produce erroneous fits. We also use the approach of [Na-
gai et al. 2009] (abbr. MPUSm), which defines differential opera-
tors directly on the MPU function, though restricted to linear func-
tions. In doing so, diffusion of the MPU function becomes possi-
ble, resulting in a more robust reconstruction method. Lastly, we
also use the method by [Ohtake et al. 2005b] (abbr. RBF), which
uses compactly-supported radial basis functions for locally-defined
implicit functions in the MPU construction. For all MPU methods
a surface mesh is generated by first evaluating the MPU function
over a regular grid, and isosurfacing the zero level-set to obtain the
surface.

Scattered Point Meshing. The method of [Ohtake et al. 2005a]
(abbr. Scattered) is a departure from the above approaches. This
method grows weighted spheres around points in order to deter-
mine the connectivity in the output triangle mesh. Quadric error
functions [Garland and Heckbert 1997] are used to position points
in the output mesh, which can result in a small amount of simplifi-
cation in the output. Similar to the PSS methods, regions empty of
data may produce holes in the output.

6.4 Algorithm Parameters

We provide a brief description of the most relevant parameters for
each algorithm.

Resolution. As all the algorithms, except Scattered, contour a
grid to obtain the surface they must contain sufficient grid resolu-
tion to adequately preserve all surface details. Our goal is to provide
each algorithm with such a resolution, while maintaining fairness
across algorithms which may use and define grids differently. To
achieve this, for each implicit surface we first determine the reso-
lution which is necessary to extract the surface with minimal error.
We find that across all shapes, a resolution of 3503 provides for
sufficient resolution to preserve surface details, hence for the PSS
and MPU methods we set their resolution to 350.

For Fourier, Poisson, and Wavelet, grid resolution serves two
purposes: isosurface precision, and the accuracy and convergence
of the Poisson solver (see Eqs. 15 and 16). We experimentally
found that sufficient resolution for isosurfacing does not imply suf-
ficient resolution for the solution to the Poisson equation. Hence
for Fourier we set the grid resolution to 512, in order to reduce
any smoothing resulting from the FFT. For Poisson and Wavelet,
although an octree depth of 9 may appear most reasonable, we set
it to 10. We find that this additional resolution in regions of high
sampling density produces a more accurate isovalue for contouring,
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which makes a significant difference in contouring low resolution
regions of the octree.

Noise. Algorithms tend to handle noise according to their cat-
egorization. For indicator functions, noise may be combated by
splatting the points into the grid using a large splat radius, as well
as through lowering the grid resolution, effectively serving as a
low pass filter. PSS methods all contain a bandwidth which de-
termines the extent of neighborhood influence. A large bandwidth
results in more points for consideration in shape fitting and hence
larger data smoothing. MPU methods and Scattered all contain er-
ror thresholds which determine the quality of a shape fit. In the
presence of noise the tolerance may be increased to avoid overfit-
ting. MPUSm also provide parameters specific to their diffusion
method, for which we use author-suggested settings.

Discussion. In practice we set an algorithm’s parameters based
on the characteristics of the input point cloud, namely the noise
level. As the point clouds of experiments 7.1-7.3 contain a con-
stant level of noise, we have kept all algorithm parameters fixed
throughout these experiments. The parameters were empirically de-
termined by measuring each method’s performance on a subset of
the point clouds. Though one may fine-tune an algorithm’s param-
eters to improve its performance with respect to a particular error
metric, parameter insensitivity is an important indication of algo-
rithmic robustness. Only in experiment 7.4, where noise varies, do
we set algorithm parameters in accordance with the noise level.

7. RESULTS

Our results are broken down into two main sets of experiments: one
in which complex shapes are sampled with a variety of sampling
settings, and another in which simple shapes are sampled with spe-
cific sampling settings. Please see Appendix B for reference to the
types of units used throughout the results.

We have not used the maximum angle deviation as an error mea-
sure in our experiments. By using triangle normals as the normal
field over a surface mesh, this measure can be quite high even when
the mesh contains low error in all other measures. Since it did not
distinguish between the algorithms, we omitted it.

Note that it is possible for these algorithms to produce sur-
faces containing multiple connected components. We extracted the
largest connected component, in terms of surface area, as the sur-
face for evaluation rather than all components. Unfortunately, this
favors algorithms in which connected components are created far
from the ground truth surface over algorithms which create addi-
tional components near the surface. Hence, in addition to the error
metrics, we have provided additional information on the algorithms
including the number of connected components, the length of the
boundary components, whether or not the surface is manifold, de-
viation from the true genus, and computation time.

7.1 Error Distributions

Our first set of experiments focuses on the performance of surface
reconstruction algorithms restricted to a single shape. Given an in-
put we sample it across a variety of scanner parameter settings and
run all reconstruction algorithms across all point clouds. We then
compute error metrics for each point cloud. For each algorithm, we
aggregate the error metrics across all point clouds to obtain what
we term error distributions.

We argue that error distributions are more effective for bench-
marking reconstruction algorithms, rather than comparing algo-
rithms with respect to a single point cloud. Each algorithm has its
strengths and flaws for particular forms of data, and to sample a

Table I. Range of Scanning Parameters for Error Distribution
Experiments

shape res scans camera dist peak variance
Gargoyle 250–350 7–11 75–115 0.2–0.4 0.5–0.75
DC 250–350 7–11 75–115 0.2–0.4 0.5–0.75
Quasimoto 250–350 7–11 75–115 0.2–0.4 0.5–0.75
Anchor 175–225 8–12 60–100 0.2–0.4 0.5–0.75
Daratech 250–350 8–12 75–115 0.2–0.4 0.5–0.75

The range of scanning parameters used in the error distribution experiments. Here, res
represents the image resolution of a single range scan, scans is the number of scans
taken, camera dist is the camera distance away from the center of the object, peak is
the radiance threshold at which to reject depth, and variance is the variance threshold
at which to reject depth.

shape in such a way that it favors the strengths of certain algorithms
provides an incomplete picture in the comparison of reconstruction
algorithms.

To this end we generate samples by varying scanning parameters
across typical use case settings. Namely, we vary: sampling reso-
lution, the number of range scans, the distance the camera resides
from the object, peak threshold, and variance threshold. Please see
Table I for the full range of parameters over all shapes. We have
adapted certain parameter ranges to specific shapes in order to en-
sure adequate coverage in the point clouds, and to sufficiently cap-
ture shape details. To reproduce small imperfections commonly
found in range data, we introduce a constant, modest amount of
noise into the laser signal. We also slightly overlap the scans and
register them, causing small misalignment errors. For each point
cloud we randomly distribute camera positions uniformly on the
bounding sphere of the object, rather than keeping their positions
fixed.

See Figure 10 for the results of this experiment across all shapes,
where the distributions take the form of box plots. The three error
measures, mean distance, Hausdorff distance, and mean angle de-
viation, demonstrate the various strengths and weaknesses of the
algorithms.

Smooth Surfaces. The Gargoyle, Dancing Children, and Quasi-
moto shapes represent our class of shapes containing entirely
smooth surface features. We find that the algorithms generally per-
form quite well on these shapes. However the different error metrics
point to subtle differences in performance. For instance, Wavelet
tends to produce nonsmooth, rather bumpy surfaces, yet the recon-
structed surface tends to stay close to ground truth, which is likely
due to the use of wavelet bases in the presence of nonuniform or
missing data. This nonsmoothness is depicted in the mean distance
and angle deviation plots, yet its Hausdorff distance performance
is quite competitive, indicating it never strays too far from ground
truth.

It is well known that Poisson and Fourier tend to over-smooth the
data, and in our experiments this is reflected in their rather large er-
ror in mean distance. However, in terms of Hausdorff distance and
mean angle deviation they perform rather well, and are fairly con-
sistent in their performance. This indicates that these algorithms are
reliable in producing surfaces which remain close to the original,
while also remaining close in differential quantities. We note that
Fourier is more consistent than Poisson, as Poisson suffers from a
lack of resolution in regions of missing data.

While RBF performed well on the Dancing Children and Quasi-
moto models, on the Gargoyle model we see that it performed
poorly across all metrics. The Gargoyle model is particularly diffi-
cult to sample as it has many concavities, where an undersampled
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Fig. 10. Plots for all of the error distribution experiments. Each bar plot represents the distribution of a particular error measure for a given shape, sampled
with a wide variety of scan parameters. The median provides a good indication of overall algorithmic performance for a given error measure, while the quartiles
give an indication of algorithmic robustness.
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Fig. 11. Plots for the sparsity experiment, where we have sampled the bumpy sphere in increasing image resolution. The bottom row depicts a subset of these
point clouds in decreasing sparsity. This experiment demonstrates how well these algorithms infer the surface from a sparse sampling.

concavity caused RBF to produce a thin crust throughout the inte-
rior of the shape rather than fill the hole.

We observe that for MPUSm its mean and Hausdorff distance is
quite stable over all of the shapes. However, its normal error tends
to not be consistent with the distance measures compared across

different algorithms. We find that MPUSm produces slightly over-
smoothed surfaces, and as such it can fail to capture fine-scale de-
tails. Hence, its normal error is comparatively larger. On the other
hand, its smoothing of the MPU parameters can correct erroneous
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Table II. Summary of Error Distribution Experiments
algorithm comps bndry manifold genus time
apss 47.37 140.86 0.50 1.82 36.02
fourier 1.54 0.00 1.00 0.49 28.70
imls 38.48 194.65 0.74 1.66 34.11
mpu 100.69 9.71 0.49 0.79 12.83
mpusmooth 2.88 2.93 0.91 0.67 17.83
poisson 1.54 0.44 1.00 0.63 36.83
rbf 51.73 6.30 0.82 13.55 34.78
scattered 1.90 214.21 1.00 7.47 4.48
spss 174.53 143.14 0.26 3.98 33.53
wavelet 1.35 0.04 1.00 0.71 2.13

Additional information for experiment 1, averaged across all point clouds and
shapes. Here, comps refers to number of connected components, bndry is the
length of boundary components, manifold is whether or not a mesh is manifold,
1 being manifold and 0 otherwise, genus refers to the amount which deviates
from the actual genus, and time is in seconds.

MPU shape fits, which likely explains its better performance over
MPU in Hausdorff distance.

Sharp Features. The Anchor and Daratech shapes are particu-
larly difficult to reconstruct. As these are shapes with sharp fea-
tures, algorithms which only model smooth surfaces have difficulty
with them. Additionally, these shapes have small topological fea-
tures which are difficult to adequately scan due to occlusion. Hence
we do not necessarily expect these algorithms to perform as well on
these shapes as the others, and instead we use these shapes to mea-
sure robustness.

In observing MPU and MPUSm, we find instability in the pres-
ence of the Anchor and Daratech point clouds, where large spurious
surface sheets are produced as a result of improperly fitting smooth
shape functions to sharp features. However note that the PSS meth-
ods perform much better, despite also using smooth shape func-
tions. PSS methods fit shape functions at every point, hence the
error will be contained locally if there exists a poor fit. MPU and
MPUSm hierarchically fit a set of shape functions according to an
error criterion, which can result in unbounded error if a poor fit
exists. Interestingly, RBF performs quite well in distance, yet has
rather large error in normals. The RBF interpolant tends to remain
quite close to the surface, but produces spurious high-frequency
details, hence the large normal deviations.

Topology. Overall, we find that the PSS methods and Scattered
tend to perform quite well in the error metrics. However, these are
also methods which produce holes in the presence of insufficient
data. To demonstrate the performance of these algorithms in terms
of topology, we also show how these algorithms behave in their
number of connected components, total length of boundary com-
ponents, whether or not the reconstructed mesh is manifold, and
the deviation from the true genus, averaged over all point clouds
and shapes – see Table II. As shown, Fourier and Poisson tend to
outperform these methods in all categories. With respect to the PSS
methods, this demonstrates that they tend not to produce topologi-
cally clean implicit functions, likely due to their local nature. How-
ever, note that their genus remains relatively close to ground truth,
whereas the local method Scattered performs poorly in genus.

7.2 Sparse Sampling

It is common in range scan data for certain areas of the surface to
be sampled less densely than others. Here we investigate how re-
construction algorithms behave as data sparsity varies, where we
treat sparsity as a controllable parameter. We are interested in ob-

serving how these algorithms infer the surface between the given
input points.

In this experiment we only vary the sampling resolution. We fix
the number of scans and camera positions such that the shape is
sufficiently covered, i.e. no missing data. We use the analytical nor-
mals of the surface, and no noise or misalignment. We use such
clean input in order to restrict the problem to only data inference.
We use the bumpy sphere as the test shape, as the coarse-scale fea-
tures of the surface make data inference plausible.

See Figure 11 for plots of the experiment. MPUSm was unable
to smooth its spherical covering on half of the point clouds due to
the extreme sparsity, so we have omitted it from this experiment.
From the distance measures we immediately see a partitioning of
the algorithms: IMLS, Poisson, SPSS, and Wavelet all tend to be-
have rather poorly, while the other algorithms perform well. This is
expected for Poisson and Wavelet, as the resolution of the output is
proportional to the input size. However, it is interesting to observe
the significant improvement of APSS over IMLS and SPSS, indi-
cating that fitting spheres to sparse data is more advantageous than
trying to fit planes to the data.

We also see that Fourier demonstrates remarkable robustness to
sparse data. Fourier performs best among all algorithms when the
data is very sparse, whereas APSS, MPU, RBF, and Scattered per-
form rather poorly on such data, though they perform better as res-
olution increases. However, observe that as the sampling resolution
becomes somewhat dense, the distance error in APSS, MPU, and
RBF steadily decreases while Fourier remains stagnant. This is a
consequence of Fourier’s inherent data smoothing. The algorithms
which fit shape functions to the data comparatively improve their
fits when the resolution increases.

7.3 Missing Data

Missing data will almost always be present in scanned data, sim-
ply due to concavities in the shape which can not be reached by
the scanner or insufficient scanning due to physical restraints of
the scanner. Here we generate incomplete point clouds by treating
missing data as a controllable parameter, where we vary the peak
threshold at which range is rejected. We note that this is quite com-
mon for scanners, since the accuracy of the scanner suffers when
the angle at which the optical axis and the normal becomes large,
and the preferred option may be to reject unacceptably noisy points.

Similar to the previous experiment, here we fix the number of
scans and camera positions, and use no additive noise, in order to
isolate missing data as the primary challenge in the input. We then
vary the peak threshold at which to reject samples from 0.8 to 0.4,
where 1 is the expected peak. We have used the bumpy sphere and
Mailbox shapes, in order to observe the behavior of these algo-
rithms in the presence of missing data on both smooth and sharp
features.

See Figure 12 for plots of the experiment. We find that all of the
indicator function methods perform quite well across both shapes,
with the notable exception of Wavelet, which fails to converge to
the limit surface as missing data decreases. We credit the robust-
ness of indicator function methods to the fact that they are global
methods which do not attempt to fit shape functions.

Indeed, methods which fit shape functions have rather erratic be-
havior, particularly in the Mailbox shape. MPU, MPUSm, and RBF
are quite unstable, producing spurious surface sheets as missing
data is introduced. When the neighborhood of an edge is sampled
on one side but not the other, extraneous surfaces may appear.

Scattered and the PSS methods tend to produce holes in surface
regions where there are no samples. Similar to MPU, MPUSm and
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Fig. 12. Plots for the missing data experiments on the bumpy sphere (top row) and Mailbox (bottom row). We generate missing data by varying the peak
intensity threshold at which the range is rejected. Note the differences in performance between the shape with smooth features and the shape with sharp
features, as missing data is varied. The Mailbox model is courtesy [Dey et al. 2003].
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Fig. 13. Noise experiments for the Spiral shape. Here we vary noise level and laser thickness, and aggregate this into distributions. A small variance in a
distribution is a good indication of robustness to noise.

RBF, the PSS methods can produce poor local shape fits in the pres-
ence of sharp features and missing data. However, the error is con-
tained locally, for similar reasons discussed in Section 7.1.

7.4 Noise

Finally we consider how robust reconstruction algorithms are to
noise in the range data. We consider two scan parameters which
have a significant impact on noise, noise magnitude and laser frus-
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Table III. Noisy Spiral Statistics
algorithm comps bndry manifold genus time
apss 221.60 0.71 1.00 0.00 50.59
fourier 1.00 0.00 1.00 0.00 27.24
imls 193.16 4.76 1.00 0.00 48.62
mpu 1.20 0.00 1.00 0.00 7.13
mpusmooth 1.08 0.06 1.00 0.00 23.08
poisson 1.00 0.00 1.00 0.00 30.90
rbf 12.48 4.69 0.92 0.30 18.90
scattered 1.08 0.00 1.00 0.44 3.11
spss 257.20 1.13 1.00 0.00 48.18
wavelet 1.00 0.00 1.00 0.00 2.26

Additional information for the noisy Spiral experiments, averaged across all
point clouds.

tum field of view. The effect of noise magnitude is fairly clear, how-
ever we note that the thickness of the laser has a significant impact.
The thicker the laser, the more difficult peak detection becomes
at depth discontinuities, resulting in samples being detected where
there is no surface.

To this end, we have taken the Spiral shape and sampled it with
varying noise magnitudes, and varying laser thickness. We suffi-
ciently sample it so that missing data or sparsity is not an issue, and
compute normals directly from the points, allowing for improper
orientation if direction propagation is incorrect. For each algorithm
and each point cloud we also manually set the parameters to per-
form best, considering the scale of the noise. For the PSS and indi-
cator function methods, such parameter settings are quite intuitive
as they are based on sampling density bandwidths. However for all
other methods a maximum error tolerance effectively determines
the amount of smoothing performed, which can be quite sensitive.

See Figure 13 for plots of the noise experiments. Note that
Fourier and Poisson, in terms of all error metrics, are quite robust
in the presence of noise. This is likely due to the global nature of
these methods, where smoothing the data is a natural consequence.
As observed by its large variance, RBF performs rather poorly in
the presence of noise. Indeed, the necessity to produce dipoles for
RBF becomes especially problematic in the presence of noise and
outliers.

We observe that MPU and MPUsm are somewhat robust in the
presence of noise given their small variance in Hausdorff distance,
though interestingly we see significant differences between them
in the two different distance measures. The smoothing performed
via MPUSm tends to expand the surface outward, resulting in poor
mean distance, yet it never strays too far from ground truth, hence
its good behavior in terms of Hausdorff distance.

The PSS methods all tend to smooth out noise and remain robust
to outliers. However, far away from the surface their behavior tends
to be quite poor, see Table III. They tend to produce many extrane-
ous connected components, as well as boundary components.

7.5 Discussion

Our small scale experiments tend to correlate well with the results
of the error distribution experiments. For instance, the unstable be-
havior of RBF in the presence of sparse and missing data mani-
fests in its unstable behavior across the Gargoyle model, which is
difficult to adequately sample due its numerous concavities. Like-
wise, the behavior of MPU and to a lesser extent MPUSm in the
presence of missing data on the Mailbox correlates with their large
variance in the Anchor and Daratech, indicative of the fact that they
have trouble reconstructing sharp features. Observe that the stable

behavior of Fourier in the small scale experiments correlates well
with its relatively small variance in the distribution plots.

Our experiments point toward a number of deficiencies in the
state of surface reconstruction. Our results demonstrate the remark-
able robustness of methods based on computation of the indicator
functions, yet these methods tend to over-smooth the data, reflected
in their poor performance in mean distance across complex shapes.
Developing an algorithm based on the indicator function which
does not over-smooth the data would be very useful. Conversely,
although MLS methods perform rather well in terms of mean and
Hausdorff distance across the complex shapes, they demonstrate
poor far-field behavior. We think that combining MLS methods
with global constraints of some nature may rectify these issues.

Our benchmark should also prove to be useful for recent methods
which resample point clouds with large missing data [Tagliasacchi
et al. 2009; Cao et al. 2010; Shalom et al. 2010]. Although we have
produced such point clouds in order to test robustness, it would be
interesting to see how well these more recent resampling methods
perform quantitatively.

All told, our benchmark consists of 351 point clouds across eight
shapes, providing rich data for surface reconstruction developers.
For our first set of experiments, we have 48 point clouds for each
shape. Over 10 algorithms this amounts to a total of 2400 differ-
ent reconstruction outputs, and over both distance and normal cor-
respondences we have a total of 4800 correspondence mappings.
We think that this construction of a distribution of point clouds
for a given shape could be used in other areas, for instance po-
tentially learning surface reconstruction, by using the point clouds
and ground truth data as training data.

Limitations. While the surfaces in our benchmark cover a broad
range of shapes, they are by no means exhaustive. As surface re-
construction becomes more specialized, such as the reconstruction
of large-scale architectural buildings [Nan et al. 2010], we envision
our benchmark to expand to these specific forms of surfaces. Our
implicit shape representation should easily be able to accommodate
other types of shapes.

Although we have generated a large variety of point cloud data
with our sampling scheme, we are keeping fixed certain settings
which may be worth further exploration. For instance, we assume
a diffuse BRDF in the scanning simulation, where it may be inter-
esting to consider different forms of surface reflectance, and even
spatially-varying BRDFs. Though laser-based optical triangulation
scanners are quite popular, other forms of scanning may be worth
simulating in order to replicate different acquisition artifacts, such
as time-of-flight scanners.

8. CONCLUSIONS

We have presented a benchmark for the evaluation and comparison
of surface reconstruction algorithms, restricted to the class of al-
gorithms which take an oriented point cloud as input, and produce
an approximating surface as output. Central to our benchmark is
a mechanism for simulating point cloud data acquired from laser-
based scanners. We use a broad class of implicit surfaces as refer-
ence shapes to sample, which allows us to obtain accurate quanti-
tative measurements.

Our extensive experiments enable us to observe a wide range
of behaviors across existing algorithms. For instance, global meth-
ods such as those which reconstruct the indicator function are very
robust in the presence of noise, while more local methods such as
MPU and MLS methods produce highly accurate reconstructions in
the presence of clean data. The experiments point towards poten-
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tial future work in surface reconstruction by illustrating the specific
advantages and disadvantages in existing approaches.

By publicly releasing our data and code, researchers will now
be able to benchmark their algorithms against existing algorithms
and see where they stand. Additionally, our modeling and sam-
pling methods will allow researchers to generate surfaces and point
clouds tailored towards their interests. Hence we envision our
benchmark to grow over time, continually incorporating data pro-
vided by the surface reconstruction community.
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APPENDIX

A. CLOSED-FORM SOLUTION OF POLYGONAL
WEIGHT FUNCTIONS

In this section, we detail the closed-form solution for Equation 2
that is used in the formation of our implicit functions. The basic
idea is to cast the integral into the local coordinate system of the tri-
angle, and perform integration in terms of polar coordinates, anal-
ogous to the construction of Green coordinates [Lipman and Levin
2010].

For a given evaluation point x and triangle t composed of the
vertices p1 , p2, and p3, and normal n, we project x onto the plane
of t:

x̃ = x +
〈
p1 − x,n

〉
n (19)

Now, for a given p ∈ t, |x− p|2+ε2 = |x̃− p|2+|x− x̃|2+ε2 =

|x̃− p|2+λ1, where λ1 = |x− x̃|2+ε2 and is constant throughout
the integration. We can now rewrite the integral as:∫

p∈t
w(x,p)dp =

∑
ti

sgn(ti)

∫
p∈ti

dp

(|x̃− p|2 + λ1)2
(20)

Where t is broken up into t1, t2, t3, formed from the triangles com-
posed of x̃ and p1,p2,p3, and sgn represents the orientation of the
triangle: positive if oriented properly, and negative otherwise. See
the left image of Figure 14 for an illustration of this decomposition.

Without loss of generality we consider a single triangle t1. We
now convert this integral into polar coordinates:∫

p∈t1

dp

(|x̃− p|2 + λ1)2
=

∫ θ=β

θ=0

∫ R(θ)

r=0

r dr dθ

(r2 + λ1)2

= −1

2

∫ β

0

dθ

R(θ)2 + λ1

+
β

2λ1

Fig. 14. We illustrate the decomposition of the integration of polygonal
weight functions. We first decompose integration into three separate trian-
gles (left), for such a single triangle perform integration in polar coordinates
(middle), followed by breaking up the integration into simpler components
through orthogonal projection onto the opposing edge (right).

The integration is centered with respect to x̃, where β is the angle
in t1 opposite x̃, and R(θ) is the length parameterized by θ. See
the middle image of Figure 14.

In order to have a clean parameterization of the length R(θ), we
break up the integral into two parts by considering the orthogonal
projection of the point x̃ onto its opposing edge, x̂, and breaking
t1 into: t11 =< x̃,p2, x̂ > and t21 =< x̃, x̂,p3 >. Without loss of
generality we consider t11, and we obtain: R(θ) = |x̃−x̂|

cos(θ)
, see the

right image of Figure 14. Hence the integral becomes:∫ β1

0

dθ

R2(θ) + λ1

= sgn(t11)

∫ β1

0

cos2(θ)

|x̃− x̂|2 + λ1 cos2(θ)

= sgn(t11)

(
β1

λ1

− |x̃− x̂|2

λ1

∫ β1

0

dθ

|x̃− x̂|2 + λ1 cos2(θ)

)
Where sgn(t11) is the sign of the orientation of the triangle, which
may be negative if x̂ projects outside of t1. Applying the double
angle formula to the above integral we obtain:

=

∫ β1

0

dθ

(|x̃− x̂|2 + λ1
2

) + λ1
2

cos(2θ)

Setting b = |x̃− x̂|2 + λ1
2

and c = λ1
2

, we may apply the relevant
antiderivative [Abramowitz and Stegun 1964] to obtain:∫

dθ

b+ c cos(2θ)
=

1√
b2 − c2

tan−1

{√
b− c
b+ c

tan θ

}
+ C

B. DESCRIPTION OF SYNTHETIC SCANNER

Here we provide additional details on our synthetic scanner, as de-
scribed in Section 5.1. To clarify the following discussion, we note
that for each shape in our benchmark we have set its maximum di-
mension to be 70mm. Hence any scanning parameter based on dis-
tance is defined with respect to the bound of 70mm. Additionally,
we place an upper bound on the radiance to be 1.

Our synthetic scanner is controlled by the following parameters:

—Image resolution. The image resolution, in conjunction with the
number of scans used, effectively defines the resolution of the
point cloud.

—Baseline distance. A small baseline distance magnifies depth
errors in triangulation, while a large baseline results in greater
occlusion. We have fixed our baseline to be with respect to the
x-axis of the camera, though this may easily be adjusted to the y-
axis by changing the laser sweep direction. We found that base-
line distances ranging from 10mm to 150mm provide good vari-
ety in triangulation accuracy and occlusions.
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—Stripe frustum field of view. The thickness of the laser stripe
has an impact on peak detection, in appropriately fitting a Gaus-
sian. By default, we set the field of view such that the number
of pixels visible within a distance of 50mm from the camera is
roughly 10, which is a function of the image resolution.

—Stripe resolution. The number of laser stripes to project impacts
the resolution of the depth. By default, we set this to be the x
resolution of the camera, in order to obtain sufficient coverage.
Setting the stripe resolution to be lower than the x resolution
may result in some points not being affected by the laser stripes.
By assigning a sufficiently large stripe frustum field of view, one
may be able to obtain sufficient coverage.

—Noise magnitude. The magnitude of the noise corrupts the laser
projection, making peak detection imprecise. Typical noise mag-
nitudes we have used range from 0, or no noise, to 0.6, which can
greatly corrupt the radiance signal.

—Radiance smoothing bandwidth. Smoothing the radiance im-
age reduces noise, though at the potential cost of sacrificing the
expected Gaussian laser profile. The bandwidth to use is largely
dependent on the stripe frustum field of view and noise level. For
instance, a thick laser with large noise magnitude will require a
fairly large bandwidth to sufficiently smooth out the noise. We
note that smoothing, in conjunction with additive noise, may re-
sult in a radiance signal with smaller peak magnitudes, which
can impact the peak magnitude threshold.

—Peak magnitude threshold. For large thresholds this will reject
parts of the surface whose radiance signal is determined weak
by a pixel’s corresponding Gaussian fit. This is a major cause
of missing data. For a laser containing little or no noise, typical
thresholds range from 0.8, which will result in only highly con-
fident range data, to 0.1, which will result in the rejection of few
points. Under noise and radiance smoothing, the peak threshold
must be adjusted to account for an expected reduction in peak
magnitude.

—Variance threshold. Range at depth discontinuities are likely to
be rejected with this threshold. We set the variance with respect
to the width of the laser, where by default we only reject range
whose variance in the Gaussian fit is larger than twice that of the
laser width. Similar to the peak magnitude threshold, the vari-
ance threshold is sensitive to the noise magnitude and smoothing
bandwidth.

We note that in our experiments, although we have generated
quite a large number of point clouds, we have hardly explored
the full parameter space of our scanner. By publicly releasing our
synthetic scanner software, surface reconstruction researchers and
practitioners will be able to replicate specific scanning conditions
of interest.
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MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. 2002. Dis-
crete differential-geometry operators for triangulated 2-manifolds. Visu-
alization and mathematics 3, 7, 34–57.

MEYER, M., KIRBY, R., AND WHITAKER, R. 2007. Topology, accuracy,
and quality of isosurface meshes using dynamic particles. IEEE Trans-
actions on Visualization and Computer Graphics 13, 6, 1704–1711.

MITRA, N. J. AND NGUYEN, A. 2003. Estimating surface normals in noisy
point cloud data. In Proceedings of the nineteenth annual symposium on
Computational geometry. SCG ’03. ACM, New York, NY, USA, 322–
328.

NAGAI, Y., OHTAKE, Y., AND SUZUKI, H. 2009. Smoothing of parti-
tion of unity implicit surfaces for noise robust surface reconstruction. In
Computer Graphics Forum. Vol. 28. 1339–1348.

NAN, L., SHARF, A., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2010.
SmartBoxes for interactive urban reconstruction. In ACM SIGGRAPH
2010 papers. ACM, 1–10.

NEXTENGINE. 2011. NextEngine 3D Laser Scanner. http://www.

nextengine.com.
OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEIDEL, H.

2003. Multi-level partition of unity implicits. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2003) 22, 3, 463–470.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H. 2005a. An integrating ap-
proach to meshing scattered point data. In Proceedings of the 2005 ACM
symposium on Solid and physical modeling. ACM, 61–69.

OHTAKE, Y., BELYAEV, A. G., AND SEIDEL, H.-P. 2005b. 3D scat-
tered data interpolation and approximation with multilevel compactly
supported RBFs. Graphical Models 67, 3, 150–165.

REGLI, W. AND GAINES, D. 1997. A repository for design, process plan-
ning and assembly. Computer-aided design 29, 12, 895–905.

SCHARSTEIN, D. AND SZELISKI, R. 2002. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. International journal
of computer vision 47, 1, 7–42.

SEITZ, S., CURLESS, B., DIEBEL, J., SCHARSTEIN, D., AND SZELISKI,
R. 2006. A comparison and evaluation of multi-view stereo reconstruc-
tion algorithms. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on. Vol. 1. IEEE Computer Society, 519–
528.

SHALOM, S., SHAMIR, A., ZHANG, H., AND COHEN-OR, D. 2010. Cone
carving for surface reconstruction. ACM Transactions on Graphics (Pro-
ceedings SIGGRAPH Asia 2010) 29, 6, 150:1–150:10.

SHAPEWAYS. 2011. Shapeways. http://www.shapeways.com.
SHEN, C., O’BRIEN, J., AND SHEWCHUK, J. 2004. Interpolating and

approximating implicit surfaces from polygon soup. ACM Transactions
on Graphics (Proceedings SIGGRAPH 2004) 23, 3, 896–904.
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